Advertisement

Diabetic Pharmacotherapies in Kidney Disease

  • Deborah A. Chon
  • Rachael T. Oxman
  • Rashmi S. Mullur
  • Jane Eileen WeinrebEmail author
Chapter

Abstract

The pharmacokinetics of antihyperglycemic medications are altered in chronic kidney disease (CKD) in several ways including reduced renal clearance, uremic alterations of hepatic and GI drug metabolism, and increased levels of unbound drug in hypoalbuminemia. These alterations predispose to hypoglycemic events. Unfortunately, patients with CKD are less able to compensate for hypoglycemic events because of reduced renal gluconeogenesis as well as decreased food intake due to poor appetite and dietary restrictions. This can be a dangerous combination. For this reason, treatment of diabetes in CKD requires attention to drug interactions, cautious dose titration, and close glucose monitoring. As renal disease progresses, patients often require dose reductions of insulin and/or oral antihyperglycemic medications to avoid hypoglycemic events. Once patients initiate dialysis therapy, drug pharmacokinetics are altered again with increased drug and urea clearance. As a result, treatment of diabetes in CKD requires frequent reassessment to meet the patient’s changing drug response and needs.

This chapter reviews the specific pharmacokinetic and dosing considerations of each antihyperglycemic medication class in CKD including biguanides, sulfonylureas, meglitinides, glucagon-like peptide 1 receptor agonists (GLP-1 RAs), dipeptidyl peptidase IV (DPP-4) inhibitors, thiazolidinediones, sodium-glucose co-transporter 2 (SGLT2) inhibitors, alpha-glucosidase inhibitors, bromocriptine, bile acid resins, insulin, and amylin analog.

Keywords

Diabetes Chronic kidney disease Antihyperglycemic medications Insulin Pharmacokinetics 

References

  1. 1.
    Abe M, Okada K, Soma M. Antidiabetic agents in patients with chronic kidney disease and end-stage renal disease on dialysis: metabolism and clinical practice. Curr Drug Metab. 2011;12(1):57–69.PubMedCrossRefGoogle Scholar
  2. 2.
    National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis Off J Natl Kidney Found. 2012;60(5):850–86.CrossRefGoogle Scholar
  3. 3.
    Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24(2):382–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar-Zadeh K, Kaysen G, et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr Off J Counc Ren Nutr Natl Kidney Found. 2013;23(2):77–90.CrossRefGoogle Scholar
  5. 5.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.PubMedCrossRefGoogle Scholar
  8. 8.
    Glucophage (R) [package insert]. Princeton: Bristol-Myers Squibb Company; 2015.Google Scholar
  9. 9.
    Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312(24):2668–75.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;4:CD002967.Google Scholar
  11. 11.
    Roussel R, Travert F, Pasquet B, Wilson PWF, Smith SC, Goto S, et al. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med. 2010;170(21):1892–9.PubMedCrossRefGoogle Scholar
  12. 12.
    FDA Drug Safety Communication. FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function. https://www.fda.gov/Drugs/DrugSafety/ucm493244.htm. Accessed 2016.
  13. 13.
    Harrower AD. Pharmacokinetics of oral antihyperglycaemic agents in patients with renal insufficiency. Clin Pharmacokinet. 1996;31(2):111–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Arnouts P, Bolignano D, Nistor I, Bilo H, Gnudi L, Heaf J, et al. Glucose-lowering drugs in patients with chronic kidney disease: a narrative review on pharmacokinetic properties. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc – Eur Ren Assoc. 2014;29(7):1284–300.Google Scholar
  15. 15.
    Krepinsky J, Ingram AJ, Clase CM. Prolonged sulfonylurea-induced hypoglycemia in diabetic patients with end-stage renal disease. Am J Kidney Dis Off J Natl Kidney Found. 2000;35(3):500–5.CrossRefGoogle Scholar
  16. 16.
    Rydberg T, Jönsson A, Røder M, Melander A. Hypoglycemic activity of glyburide (glibenclamide) metabolites in humans. Diabetes Care. 1994;17(9):1026–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Holstein A, Plaschke A, Egberts EH. Lower incidence of severe hypoglycaemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide. Diabetes Metab Res Rev. 2001;17(6):467–73.PubMedCrossRefGoogle Scholar
  18. 18.
    van Staa T, Abenhaim L, Monette J. Rates of hypoglycemia in users of sulfonylureas. J Clin Epidemiol. 1997;50(6):735–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenkranz B, Profozic V, Metelko Z, Mrzljak V, Lange C, Malerczyk V. Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia. 1996;39(12):1617–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Schernthaner G, Grimaldi A, Di Mario U, Drzewoski J, Kempler P, Kvapil M, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Investig. 2004;34(8):535–42.CrossRefGoogle Scholar
  21. 21.
    Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37(10):2864–83.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Amaryl(R) [package insert]. Bridgewater: Sanofi-aventis U.S., LLC.Google Scholar
  23. 23.
    Balant L, Zahnd G, Gorgia A, Schwarz R, Fabre J. Pharmacokinetics of glipizide in man: influence of renal insufficiency. Diabetologia. 1973:331–8.Google Scholar
  24. 24.
    Yale J-F. Oral antihyperglycemic agents and renal disease: new agents, new concepts. J Am Soc Nephrol. 2005;16(3 suppl 1):S7–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Riddle M. Combining sulfonylureas and other oral agents. Am J Med. 2000;108(6., Supplement 1):15–22.CrossRefGoogle Scholar
  26. 26.
    Cheng AYY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ Can Med Assoc J. 2005;172(2):213–26.CrossRefGoogle Scholar
  27. 27.
    Hu S, Wang S, Dunning BE. Glucose-dependent and glucose-sensitizing insulinotropic effect of nateglinide: comparison to sulfonylureas and repaglinide. Int J Exp Diabetes Res. 2001;2(1):63–72.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dornhorst A. Insulinotropic meglitinide analogues. Lancet. 2001;358(9294):1709–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Moses R. A review of clinical experience with the prandial glucose regulator, repaglinide, in the treatment of Type 2 diabetes. Expert Opin Pharmacother. 2000;1(7):1455–67.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosenstock J, Hassman DR, Madder RD, Brazinsky SA, Farrell J, Khutoryansky N, et al. Repaglinide versus nateglinide monotherapy a randomized, multicenter study. Diabetes Care. 2004;27(6):1265–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Prandin(R) [package insert]. Princeton: Novo Nordisk, Inc.; 2003–2009.Google Scholar
  32. 32.
    Schumacher S, Abbasi I, Weise D, Hatorp V, Sattler K, Sieber J, et al. Single- and multiple-dose pharmacokinetics of repaglinide in patients with type 2 diabetes and renal impairment. Eur J Clin Pharmacol. 2001;57(2):147–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Marbury TC, Ruckle JL, Hatorp V, Andersen MP, Nielsen KK, Huang WC, et al. Pharmacokinetics of repaglinide in subjects with renal impairment. Clin Pharmacol Ther. 2000;67(1):7–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Hasslacher C. Safety and efficacy of repaglinide in type 2 diabetic patients with and without impaired renal function. Diabetes Care. 2003;26(3):886–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Weaver ML, Orwig BA, Rodriguez LC, Graham ED, Chin JA, Shapiro MJ, et al. Pharmacokinetics and metabolism of nateglinide in humans. Drug Metab Dispos Biol Fate Chem. 2001;29(4 Pt 1):415–21.PubMedGoogle Scholar
  36. 36.
    Starlix(R) [package insert]. East Hanover: Novartis Pharmaceuticals Corporation, Inc.; 2011.Google Scholar
  37. 37.
    Devineni D, Walter YH, Smith HT, Lee JS, Prasad P, McLeod JF. Pharmacokinetics of nateglinide in renally impaired diabetic patients. J Clin Pharmacol. 2003;43(2):163–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Nagai T, Imamura M, Iizuka K, Mori M. Hypoglycemia due to nateglinide administration in diabetic patient with chronic renal failure. Diabetes Res Clin Pract. 2003;59(3):191–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet Lond Engl. 2006;368(9548):1696–705.CrossRefGoogle Scholar
  40. 40.
    Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27(11):2628–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Nauck MA, Hompesch M, Filipczak R, Le TDT, Zdravkovic M, Gumprecht J, et al. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2006;114(8):417–23.CrossRefGoogle Scholar
  42. 42.
    Marso SP, Bain SC, Consoli A. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. New Engl J Med. 2016;375:311–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Byetta(R) [package insert]. San Diego: Amylin Pharmaceuticals, Inc.; 2009.Google Scholar
  45. 45.
    Victoza (R) [package insert]. Princeton: Novo Nordisk, Inc.; 2010.Google Scholar
  46. 46.
    Trulicity (R) [package insert]. Indianapolis: Eli Lilly and Company; 2015.Google Scholar
  47. 47.
    Tanzeum (R) [package insert]. Wilmington: GlaxoSmithKline LLC; 2015.Google Scholar
  48. 48.
    Butler PC, Elashoff M, Elashoff R, Gale EAM. A critical analysis of the clinical use of incretin-based therapies: are the GLP-1 therapies safe? Diabetes Care. 2013;36(7):2118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Giorda CB, Nada E, Tartaglino B, Marafetti L, Gnavi R. A systematic review of acute pancreatitis as an adverse event of type 2 diabetes drugs: from hard facts to a balanced position. Diabetes Obes Metab. 2014;16(11):1041–7.PubMedCrossRefGoogle Scholar
  50. 50.
    DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28(5):1092–100.PubMedCrossRefGoogle Scholar
  51. 51.
    Zinman B, Hoogwerf BJ, Durán García S, Milton DR, Giaconia JM, Kim DD, et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med. 2007;146(7):477–85.PubMedCrossRefGoogle Scholar
  52. 52.
    Riddle MC, Henry RR, Poon TH, Zhang B, Mac SM, Holcombe JH, et al. Exenatide elicits sustained glycaemic control and progressive reduction of body weight in patients with type 2 diabetes inadequately controlled by sulphonylureas with or without metformin. Diabetes Metab Res Rev. 2006;22(6):483–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Linnebjerg H, Kothare PA, Park S, Mace K, Reddy S, Mitchell M, et al. Effect of renal impairment on the pharmacokinetics of exenatide. Br J Clin Pharmacol. 2007;64(3):317–27.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Davies MJ, Bain SC, Atkin SL, Rossing P, Scott D, Shamkhalova MS, et al. Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRA-RENAL): a randomized clinical trial. Diabetes Care. 2016;39(2):222–30.PubMedGoogle Scholar
  55. 55.
    Jacobsen LV, Hindsberger C, Robson R, Zdravkovic M. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. Br J Clin Pharmacol. 2009;68(6):898–905.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Umpierrez G, Tofé Povedano S, Pérez Manghi F, Shurzinske L, Pechtner V. Efficacy and safety of dulaglutide monotherapy versus metformin in type 2 diabetes in a randomized controlled trial (AWARD-3). Diabetes Care. 2014;37(8):2168–76.PubMedCrossRefGoogle Scholar
  57. 57.
    Gurung T, Shyangdan DS, O’Hare JP, Waugh N. A novel, long-acting glucagon-like peptide receptor-agonist: dulaglutide. Diabetes Metab Syndr Obes Targets Ther. 2015;8:363–86.CrossRefGoogle Scholar
  58. 58.
    Grunberger G, Chang A, Garcia Soria G, Botros FT, Bsharat R, Milicevic Z. Monotherapy with the once-weekly GLP-1 analogue dulaglutide for 12 weeks in patients with Type 2 diabetes: dose-dependent effects on glycaemic control in a randomized, double-blind, placebo-controlled study. Diabet Med J Br Diabet Assoc. 2012;29(10):1260–7.CrossRefGoogle Scholar
  59. 59.
    Geiser JS, Heathman MA, Cui X, Martin J, Loghin C, Chien JY, et al. Clinical pharmacokinetics of dulaglutide in patients with type 2 diabetes: analyses of data from clinical trials. Clin Pharmacokinet. 2016;55(5):625–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Fonseca VA, Alvarado-Ruiz R, Raccah D, et al. Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy: a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono). Diabetes Care. 2012;35(6):1225–31.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ahren B, Dimas AL, Miossec P, et al. Efficacy and safety of lixisenatide once-daily morning or evening injections in type 2 diabetes inadequately controlled on metformin (GetGoal-M). Diabetes Care. 2013;36(9):2543–50.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pinget M, Goldenberg R, Niemoeller E, et al. Efficacy and safety of lixisenatide once daily versus placebo in type 2 diabetes insufficiently controlled on pioglitazone (GetGoal-P). Diabetes Obes Metab. 2013;15(11):1000–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Rosenstock J, Hanefeld M, Shamanna P, et al. Beneficial effects of once-daily Lixisenatide on overall and postprandial glycemic levels without significant excess of hypoglycemia in Type 2 diabetes inadequately controlled on a sulfonylurea with or without metformin (GetGoal-S). J Diabetes Complicat. 2014;28(3):386–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Riddle MC, Forst T, Aronson R, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled with newly initiated and continuously titrated basal insulin glargine: a 24-week, randomized, placebo-controlled study (GetGoal-Duo-1). Diabetes Care. 2013;36(9):2497–503.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hanefeld M, Arteaga JM, Leiter LA, et al. Efficacy and safety of lixisenatide in patients with type 2 diabetes and renal impairment. Diabetes Obes Metab. 2017;19(11):1594–601.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ozempic [package insert]. Plainsboro: Novo Nordisk Inc.; 2017.Google Scholar
  67. 67.
    Ahrén B, Masmiquel L, Kumar H, et al. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): a 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017;5(5):341–54.PubMedCrossRefGoogle Scholar
  68. 68.
    Ahmann AJ, Capehorn M, Charpenier G, et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): a 56-week, open-label, randomized clinical trial. Diabetes Care. 2018;41(2):258–66.PubMedCrossRefGoogle Scholar
  69. 69.
    Aroda VR, Bain SC, Cariou B, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017;5(5):355–66. do.PubMedCrossRefGoogle Scholar
  70. 70.
    Pratley RE, Aroda VR, Lingvay I, et al. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018;6(4):275–86.PubMedCrossRefGoogle Scholar
  71. 71.
    Soreli C, et al. Efficacy and safety of once-weekly semiglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blund, randomized, placebo-controlled, parellel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Encodinol. 2017;5(4):251–60.CrossRefGoogle Scholar
  72. 72.
    Rodbard HW, Lingavay I, Reed J, et al. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): a randomized, controlled trial. J Clin Endocrinol Metab. 2018;103(6):2291–301.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Marbury TC, Flint A, Jacobsen JB, et al. Pharmacokinetics and tolerability of a single dose of semaglutide, a human glucagon-like peptide-1 analog, in subjects with and without renal impairment. Clin Pharmacokinet. 2017;56(11):1381–90.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Nakamura Y, Hasegawa H, Tsuji M, Udaka Y, Mihara M, Shimizu T, et al. Diabetes therapies in hemodialysis patients: dipeptidase-4 inhibitors. World J Diabetes. 2015;6(6):840–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    FDA Drug Safety Communication. FDA warns that DPP-4 inhibitors for type 2 diabetes may cause severe joint pain. 2015.Google Scholar
  76. 76.
    Bergman AJ, Cote J, Yi B, Marbury T, Swan SK, Smith W, et al. Effect of renal insufficiency on the pharmacokinetics of sitagliptin, a dipeptidyl peptidase-4 inhibitor. Diabetes Care. 2007;30(7):1862–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Januvia (R) [package insert]. Whitehouse Station: Merck & Co., Inc.; 2010.Google Scholar
  78. 78.
    Chan JCN, Scott R, Arjona Ferreira JC, Sheng D, Gonzalez E, Davies MJ, et al. Safety and efficacy of sitagliptin in patients with type 2 diabetes and chronic renal insufficiency. Diabetes Obes Metab. 2008;10(7):545–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Nowicki M, Rychlik I, Haller H, Warren M, Suchower L, Gause-Nilsson I, et al. Long-term treatment with the dipeptidyl peptidase-4 inhibitor saxagliptin in patients with type 2 diabetes mellitus and renal impairment: a randomised controlled 52-week efficacy and safety study. Int J Clin Pract. 2011;65(12):1230–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Boulton DW, Li L, Frevert EU, Tang A, Castaneda L, Vachharajani NN, et al. Influence of renal or hepatic impairment on the pharmacokinetics of saxagliptin. Clin Pharmacokinet. 2011;50(4):253–65.PubMedCrossRefGoogle Scholar
  81. 81.
    Onglyza (R) [package insert]. Princeton: Bristol-Myers Squibb Company; 2009.Google Scholar
  82. 82.
    Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Groop P-H, Del Prato S, Taskinen M-R, Owens DR, Gong Y, Crowe S, et al. Linagliptin treatment in subjects with type 2 diabetes with and without mild-to-moderate renal impairment. Diabetes Obes Metab. 2014;16(6):560–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    McGill JB, Sloan L, Newman J, Patel S, Sauce C, von Eynatten M, et al. Long-term efficacy and safety of linagliptin in patients with type 2 diabetes and severe renal impairment: a 1-year, randomized, double-blind, placebo-controlled study. Diabetes Care. 2013;36(2):237–44.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Blech S, Ludwig-Schwellinger E, Gräfe-Mody EU, Withopf B, Wagner K. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos Biol Fate Chem. 2010;38(4):667–78.PubMedCrossRefGoogle Scholar
  86. 86.
    Graefe-Mody U, Friedrich C, Port A, Ring A, Retlich S, Heise T, et al. Effect of renal impairment on the pharmacokinetics of the dipeptidyl peptidase-4 inhibitor linagliptin(*). Diabetes Obes Metab. 2011;13(10):939–46.PubMedCrossRefGoogle Scholar
  87. 87.
    Tradjenta (R) [package insert]. Ridgefield: Boehringer Ingelheim Pharmaceuticals, Inc.; 2012.Google Scholar
  88. 88.
    Nauck MA, Ellis GC, Fleck PR, Wilson CA, Mekki Q, Alogliptin Study 008 Group. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract. 2009;63(1):46–55.PubMedCrossRefGoogle Scholar
  89. 89.
    Kaku K, Itayasu T, Hiroi S, Hirayama M, Seino Y. Efficacy and safety of alogliptin added to pioglitazone in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial with an open-label long-term extension study. Diabetes Obes Metab. 2011;13(11):1028–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Pratley RE. Alogliptin: a new, highly selective dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2009;10(3):503–12.PubMedCrossRefGoogle Scholar
  91. 91.
    Nesina (R) [package insert]. Deerfield: Takeda Pharmaceuticals America, Inc.; 2013.Google Scholar
  92. 92.
    Fujii Y, Abe M, Higuchi T, Mizuno M, Suzuki H, Matsumoto S, et al. The dipeptidyl peptidase-4 inhibitor alogliptin improves glycemic control in type 2 diabetic patients undergoing hemodialysis. Expert Opin Pharmacother. 2013;14(3):259–67.PubMedCrossRefGoogle Scholar
  93. 93.
    Yki-Järvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18.PubMedCrossRefGoogle Scholar
  94. 94.
    Armoni M, Kritz N, Harel C, Bar-Yoseph F, Chen H, Quon MJ, et al. Peroxisome proliferator-activated receptor-γ represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem. 2003;278(33):30614–23.PubMedCrossRefGoogle Scholar
  95. 95.
    Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.PubMedCrossRefGoogle Scholar
  96. 96.
    Sarafidis PA, Bakris GL. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int. 2006;70(7):1223–33.PubMedCrossRefGoogle Scholar
  97. 97.
    Sugawara A, Uruno A, Kudo M, Matsuda K, Yang CW, Ito S. Effects of PPARγ on hypertension, atherosclerosis, and chronic kidney disease. Endocr J. 2010;57(10):847–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Actos(R) [package insert]. Deerfield: Takeda Pharmaceuticals America, Inc.; 2009–2011.Google Scholar
  99. 99.
    Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170(14):1191–201.PubMedCrossRefGoogle Scholar
  100. 100.
    Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, et al. Thiazolidinedione use, fluid retention, and congestive heart failure a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27(1):256–63.PubMedCrossRefGoogle Scholar
  101. 101.
    Rocco MV, Berns JS. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60(5):850–86.CrossRefGoogle Scholar
  102. 102.
    Yaturu S, Bryant B, Jain SK. Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care. 2007;30(6):1574–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab. 2006;91(9):3349–54.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592–600.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    FDA Drug Safety Communication. FDA requires removal of some prescribing and dispensing restrictions for rosiglitazone-containng diabetes medicines [Internet]. 2013 [cited 2015 Dec 15]. Available from: http://www.fda.gov/downloads/Drugs/DrugSafety/UCM381108.pdf.
  106. 106.
    Budde K, Neumayer H-H, Fritsche L, Sulowicz W, Stompôr T, Eckland D. The pharmacokinetics of pioglitazone in patients with impaired renal function. Br J Clin Pharmacol. 2003;55(4):368–74.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Avandia(R) [package insert]. Research Triangle Park: GlaxoSmithKline, Inc.; 2007.Google Scholar
  108. 108.
    Thompson-Culkin K, Zussman B, Miller AK, Freed MI. Pharmacokinetics of rosiglitazone in patients with end-stage renal disease. J Int Med Res. 2002;30(4):391–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Cox PJ, Ryan DA, Hollis FJ, Harris A-M, Miller AK, Vousden M, et al. Absorption, disposition, and metabolism of rosiglitazone, a potent thiazolidinedione insulin sensitizer, in humans. Drug Metab Dispos. 2000;28(7):772–80.PubMedGoogle Scholar
  110. 110.
    Niemi M, Backman JT, Granfors M, Laitila J, Neuvonen M, Neuvonen PJ. Gemfibrozil considerably increases the plasma concentrations of rosiglitazone. Diabetologia. 2003;46(10):1319–23.PubMedCrossRefGoogle Scholar
  111. 111.
    Idris I, Donnelly R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab. 2009;11(2):79–88.PubMedCrossRefGoogle Scholar
  112. 112.
    Paisley AN, Paisley AJ, Yadav R, Younis N, Rao-Balakrishna P, Soran H. Dapagliflozin: a review on efficacy, clinical effectiveness and safety. Expert Opin Investig Drugs. 2013;22(1):131–40.PubMedCrossRefGoogle Scholar
  113. 113.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRefGoogle Scholar
  114. 114.
    Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.PubMedCrossRefGoogle Scholar
  115. 115.
    Yale J-F, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15(5):463–73.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    FDA Drug Safety Communication. FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood. 2015.Google Scholar
  117. 117.
    Abdul-Ghani MA, Norton L, DeFronzo RA. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. Am J Physiol Renal Physiol. 2015;309(11):F889–900.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ogawa W, Sakaguchi K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: possible mechanism and contributing factors. J Diabetes Investig. 2016;7(2):135–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38(9):1638–42.PubMedCrossRefGoogle Scholar
  120. 120.
    Invokana (R) [package insert]. Titusville: Janssen Pharmaceuticals, Inc.; 2013.Google Scholar
  121. 121.
    Watts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157–66.PubMedCrossRefGoogle Scholar
  122. 122.
    Farxiga (R) [package insert]. Princeton: Bristol-Myers Squibb Company; 2014.Google Scholar
  123. 123.
    Kasichayanula S, Liu X, Pe Benito M, Yao M, Pfister M, LaCreta FP, et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol. 2013;76(3):432–44.PubMedCrossRefGoogle Scholar
  124. 124.
    FDA Briefing Document. New drug application for dapagliflozin. 2013.Google Scholar
  125. 125.
    Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):369–84.PubMedCrossRefGoogle Scholar
  126. 126.
    Macha S, Mattheus M, Halabi A, Pinnetti S, Woerle HJ, Broedl UC. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab. 2014;16(3):215–22.PubMedCrossRefGoogle Scholar
  127. 127.
    Jardiance (R) [package insert]. Ridgefield: Boehringer Ingelheim Pharmaceuticals, Inc.; 2014.Google Scholar
  128. 128.
    Terra S, Frias J, Goldman A, Aronson R, Darekar A, Huyck S, Terra S, et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled type 2 diabetes despite diet and exercise: the 52-week VERTIS MONO study. Diabetologia. 2017;60(1 Supplement 1). Springer Verlag):S408.Google Scholar
  129. 129.
    Rosenstock J, Frias J, Páll D, Charbonnel B, Pascu R, Saur D, Darekar A, Huyck S, Shi H, Lauring B, Terra SG. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab. 2018;20:520–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Hollander P, Liu J, Hill J, Johnson J, Jiang ZW, Golm G, Huyck S, Terra SG, Mancuso JP, Engel SS, Lauring B. Ertugliflozin compared with glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin: the VERTIS SU randomized study. Diabetes Ther. 2018;9:193–207.PubMedCrossRefGoogle Scholar
  131. 131.
    Lauring B, Miller SS, Krumins T, Zhou HJ, Huyck S, Johnson J, Golm G, Terra SG, Mancuso JP, Engel SS. Safety and efficacy of ertugliflozin in combination with sitagliptin in patients with type 2 diabetes inadequately controlled on diet and exercise: the VERTIS SITA trial. Diabetologia. 2017.Google Scholar
  132. 132.
    Eldor R, Liu J, Dagogo-Jack S, Amorin G, Johnson J, Liao Y, Huyck S, Golm G, Terra SG, Mancuso JP, Engel SS, Lauring B. Safety and efficacy of ertugliflozin after 52 weeks in patients with type 2 diabetes inadequately controlled on metformin and sitagliptin: VERTIS SITA2 trial extension. Conference: 53rd Annual Meeting of the European Association for the Study of Diabetes, EASD 2017. Portugal. Diabetologia. 2017;60(1 Supplement 1):S21.Google Scholar
  133. 133.
    Grunberger G, Camp S, Johnson J, Huyck S, Terra SG, Mancuso JP, Jiang ZW, Golm G, Engel SS, Lauring B. Ertugliflozin in patients with stage 3 chronic kidney disease and type 2 diabetes mellitus: the VERTIS RENAL randomized study. Diabetes Ther. 2018;9(1):49–66.PubMedCrossRefGoogle Scholar
  134. 134.
    Precose(R) [package insert]. Wayne: Bayer HealthCare Pharmaceuticals, Inc.; 2008.Google Scholar
  135. 135.
    Van de Laar FA, Lucassen PLBJ, Akkermans RP, Van de Lisdonk EH, Rutten GEHM, Van Weel C. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005;2:CD003639.Google Scholar
  136. 136.
    Glyset (R) [package insert]. Leverkusen: Bayer HealthCare AG, Inc.; 2008.Google Scholar
  137. 137.
    Woo TM, Wynne AL. Pharmacotherapeutics for nurse practitioner prescribers: F.A. Davis; 2011. p. 1517.Google Scholar
  138. 138.
    van de Laar FA. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc Health Risk Manag. 2008;4(6):1189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet Lond Engl. 2002;359(9323):2072–7.CrossRefGoogle Scholar
  140. 140.
    Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.PubMedCrossRefGoogle Scholar
  141. 141.
    Chang C-H, Chang Y-C, Lin J-W, Chen S-T, Chuang L-M, Lai M-S. Cardiovascular risk associated with acarbose versus metformin as the first-line treatment in patients with type 2 diabetes: a nationwide cohort study. J Clin Endocrinol Metab. 2015;100(3):1121–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Cincotta AH, Luo S, Zhang Y, Liang Y, Bina KG, Jetton TL, et al. Chronic infusion of norepinephrine into the VMH of normal rats induces the obese glucose-intolerant state. Am J Physiol Regul Integr Comp Physiol. 2000;278(2):R435–44.PubMedCrossRefGoogle Scholar
  143. 143.
    Luo S, Luo J, Meier AH, Cincotta AH. Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport. 1997;8(16):3495–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Luo S, Meier AH, Cincotta AH. Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology. 1998;68(1):1–10.PubMedCrossRefGoogle Scholar
  145. 145.
    Cincotta AH, Meier AH. Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally obese hamsters (Mesocricetus auratus). Metabolism. 1995;44(10):1349–55.PubMedCrossRefGoogle Scholar
  146. 146.
    Cincotta AH, Meier AH, Cincotta M Jr. Bromocriptine improves glycaemic control and serum lipid profile in obese Type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opin Investig Drugs. 1999;8(10):1683–707.PubMedCrossRefGoogle Scholar
  147. 147.
    Gaziano JM, Cincotta AH, O’Connor CM, Ezrokhi M, Rutty D, Ma ZJ, et al. Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes Care. 2010;33(7):1503–8.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gaziano JM, Cincotta AH, Vinik A, Blonde L, Bohannon N, Scranton R. Effect of bromocriptine-QR (a quick-release formulation of bromocriptine mesylate) on major adverse cardiovascular events in type 2 diabetes subjects. J Am Heart Assoc. 2012;1(5):e002279.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Defronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34(4):789–94.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Mejía-Rodríguez O, Herrera-Abarca JE, Ceballos-Reyes G, Avila-Diaz M, Prado-Uribe C, Belio-Caro F, et al. Cardiovascular and renal effects of bromocriptine in diabetic patients with stage 4 chronic kidney disease. Biomed Res Int. 2013;2013:104059.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Handelsman Y. Role of bile acid sequestrants in the treatment of type 2 diabetes. Diabetes Care. 2011;34(Supplement 2):S244–50.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Fonseca VA, Handelsman Y, Staels B. Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes Metab. 2010;12(5):384–92.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Staels DB, Kuipers F. Bile acid sequestrants and the treatment of type 2 diabetes mellitus. Drugs. 2012;67(10):1383–92.CrossRefGoogle Scholar
  154. 154.
    Beysen C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, et al. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia. 2011;55(2):432–42.PubMedCrossRefGoogle Scholar
  155. 155.
    Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol. 2005;25(10):2020–30.PubMedCrossRefGoogle Scholar
  156. 156.
    Smushkin G, Sathananthan M, Piccinini F, Man CD, Law JH, Cobelli C, et al. The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes. Diabetes. 2013;62(4):1094–101.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Welchol(R) [package insert]. Parsippany: Daiichi Sankyo, Inc.; 2000.Google Scholar
  158. 158.
    Harper CR, Jacobson TA. Managing dyslipidemia in chronic kidney disease. J Am Coll Cardiol. 2008;51(25):2375–84.PubMedCrossRefGoogle Scholar
  159. 159.
    Mak RH. Impact of end-stage renal disease and dialysis on glycemic control. Semin Dial. 2000;13(1):4–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Scheen AJ. Pharmacokinetic considerations for the treatment of diabetes in patients with chronic kidney disease. Expert Opin Drug Metab Toxicol. 2013;9(5):529–50.PubMedCrossRefGoogle Scholar
  161. 161.
    Rabkin R, Ryan MP, Duckworth WC. The renal metabolism of insulin. Diabetologia. 1984;27(3):351–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Rubenstein AH, Spitz I. Role of the kidney in insulin metabolism and excretion. Diabetes. 1968;17(3):161–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Rave K, Heise T, Pfützner A, Heinemann L, Sawicki PT. Impact of diabetic nephropathy on pharmacodynamic and pharmacokinetic properties of insulin in type 1 diabetic patients. Diabetes Care. 2001;24(5):886–90.PubMedCrossRefGoogle Scholar
  164. 164.
    Mühlhauser I, Toth G, Sawicki PT, Berger M. Severe hypoglycemia in type I diabetic patients with impaired kidney function. Diabetes Care. 1991;14(4):344–6.PubMedCrossRefGoogle Scholar
  165. 165.
    Levemir (R) [package insert]. Princeton: Novo Nordisk, Inc.; 2005.Google Scholar
  166. 166.
    Reilly JB, Berns JS. Selection and dosing of medications for management of diabetes in patients with advanced kidney disease. Semin Dial. 2010;23(2):163–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Lantus (R) [package insert]. Bridgewater: Sanofi-Aventis US LLC; 2007.Google Scholar
  168. 168.
    Novolin N (R) [package insert]. Princeton: Novo Nordisk, Inc.; 2005.Google Scholar
  169. 169.
    Novolog (R) [package insert]. Princeton: Novo Nordisk, Inc.; 2015.Google Scholar
  170. 170.
    Humalog (R) [package insert]. Indianapolis: Eli Lilly and Company; 2015.Google Scholar
  171. 171.
    Apidra (R) [package insert]. Bridgewater: Sanofi-aventis U.S., LLC; 2009.Google Scholar
  172. 172.
    Afrezza (R) [package insert]. Danbury: MannKind Corporation; 2014.Google Scholar
  173. 173.
    Potocka E, Cassidy JP, Haworth P, Heuman D, van Marle S, Baughman RA. Pharmacokinetic characterization of the novel pulmonary delivery excipient fumaryl diketopiperazine. J Diabetes Sci Technol. 2010;4(5):1164–73.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Biesenbach G, Raml A, Schmekal B, Eichbauer-Sturm G. Decreased insulin requirement in relation to GFR in nephropathic Type 1 and insulin-treated Type 2 diabetic patients. Diabet Med J Br Diabet Assoc. 2003;20(8):642–5.CrossRefGoogle Scholar
  175. 175.
    Williams ME, Garg R. Glycemic management in ESRD and earlier stages of CKD. Am J Kidney Dis Off J Natl Kidney Found. 2014;63(2 Suppl 2):S22–38.CrossRefGoogle Scholar
  176. 176.
    Sobngwi E, Enoru S, Ashuntantang G, Azabji-Kenfack M, Dehayem M, Onana A, et al. Day-to-day variation of insulin requirements of patients with type 2 diabetes and end-stage renal disease undergoing maintenance hemodialysis. Diabetes Care. 2010;33(7):1409–12.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Huang C-C. Treatment targets for diabetic patients on peritoneal dialysis: any evidence? Perit Dial Int J Int Soc Perit Dial. 2007;27(Suppl 2):S176–9.Google Scholar
  178. 178.
    Almalki MH, Altuwaijri MA, Almehthel MS, Sirrs SM, Singh RS. Subcutaneous versus intraperitoneal insulin for patients with diabetes mellitus on continuous ambulatory peritoneal dialysis: meta-analysis of non-randomized clinical trials. Clin Investig Med Médecine Clin Exp. 2012;35(3):E132–43.Google Scholar
  179. 179.
    Fine A, Parry D, Ariano R, Dent W. Marked variation in peritoneal insulin absorption in peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial. 2000;20(6):652–5.Google Scholar
  180. 180.
    Verspohl EJ. Novel pharmacological approaches to the treatment of type 2 diabetes. Pharmacol Rev. 2012;64(2):188–237.PubMedCrossRefGoogle Scholar
  181. 181.
    Edelman SV, Schroeder BE, Frias JP. Pramlintide acetate in the treatment of Type 2 and Type 1 diabetes mellitus. Expert Rev Endocrinol Metab. 2007;2(1):9–18.PubMedCrossRefGoogle Scholar
  182. 182.
    Schmitz O, Brock B, Rungby J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes. 2004;53(Suppl 3):S233–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Symlin(R) [package insert]. Wilmington: AstraZenecaPharmaceuticals, Inc.; 2014.Google Scholar
  184. 184.
    Alrefai HA, Latif KA, Hieronymus LB, Weakley CR, Moss RJ. Pramlintide: clinical strategies for success. Diabetes Spectr. 2010;23(2):124–30.CrossRefGoogle Scholar
  185. 185.
    Bolignano D, Zoccali C. Glitazones in chronic kidney disease: potential and concerns. Nutr Metab Cardiovasc Dis. 2012;22(3):167–75.PubMedCrossRefGoogle Scholar
  186. 186.
    Hall PM. Prevention of progression in diabetic nephropathy. Diabetes Spectr. 2006;19(1):18–24.CrossRefGoogle Scholar
  187. 187.
    Wanner C, et al. N Engl J Med. 2016;375:323–34.PubMedCrossRefGoogle Scholar
  188. 188.
    Vallianou NG, Geladari E, Kazazis CE. SGLT-2 inhibitors: their pleiotropic properties. Diabetes Metab Syndr. 2017;11:311–5.PubMedCrossRefGoogle Scholar
  189. 189.
    Mann JFE, Orsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. New Engl J Med. 2017;377:839–48.PubMedCrossRefGoogle Scholar
  190. 190.
    Pfeffer MA, Claggett B, Diaz R, et al. Lisixenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–57.PubMedCrossRefGoogle Scholar
  191. 191.
    Groop PH, Cooper ME, Perkovic V, et al. Linagliptin and its effects on hyperglycemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes Metab. 2017;19:1610–9.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Nauck MA, Stewart MW, Perkins C, Jones-Leone A, Yang F, Perry C, et al. Efficacy and safety of once-weekly GLP-1 receptor agonist albiglutide (HARMONY 2): 52 week primary endpoint results from a randomised, placebo-controlled trial in patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetologia. 2016;59(2):266–74.PubMedCrossRefGoogle Scholar
  193. 193.
    Baylis C, Atzpodien E-A, Freshour G, Engels K. Peroxisome proliferator-activated receptor γ agonist provides superior renal protection versus angiotensin-converting enzyme inhibition in a rat model of type 2 diabetes with obesity. J Pharmacol Exp Ther. 2003;307(3):854–60.PubMedCrossRefGoogle Scholar
  194. 194.
    Adlyxin ® [package insert]. Bridgewater: Sanofi-Aventis US LLC; 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Deborah A. Chon
    • 1
  • Rachael T. Oxman
    • 1
  • Rashmi S. Mullur
    • 1
  • Jane Eileen Weinreb
    • 1
    Email author
  1. 1.Division of Diabetes, Endocrinology, and MetabolismDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesUSA

Personalised recommendations