Advertisement

Glycemic Metrics and Targets in Kidney Disease

  • Joshua J. NeumillerEmail author
  • Irl B. Hirsch
Chapter

Abstract

While intensive glycemic management has been shown to delay the onset and progression of kidney disease, optimal glycemic targets in the setting of diabetic kidney disease (DKD) remain controversial. A variety of factors associated with kidney disease and/or the uremic state can impact the accuracy and interpretability of currently available glycemic measures. Alterations in erythrocyte survival time, hemoglobin concentrations, and other factors likely bias glycated hemoglobin (A1C) values to lower levels in people with DKD, yet A1C remains a key monitoring parameter recommended to inform the glycemic management of people with DKD. The optimal A1C target for patients with DKD, however, remains controversial. Evidence suggests that overly aggressive A1C targets in advanced DKD may contribute to increased risk of mortality. Several observational studies have reported a “U-shaped” relationship between A1C and mortality, with current epidemiological data suggesting that relatively conservative A1C targets may be desirable. Patients with DKD are additionally known to be at particular risk for hypoglycemia, and hypoglycemia avoidance is an important priority when establishing glycemic targets. Given the emphasis on individualized glycemic targets in all people with diabetes, and when considering the interpretive difficulties at play in the setting of DKD, patient-derived glucose data obtained via self-monitoring of blood glucose remains a crucial tool to consolidate therapeutic goals. With additional study and experience, other current and evolving methods of glycemic assessment may prove beneficial in the management of overall glycemic control in the setting of kidney disease.

Keywords

1,5-Anhydroglucitol Blood glucose Continuous glucose monitoring Diabetes Fructosamine Glycated albumin Glycemic control Glycemic targets Hemoglobin A1c Kidney disease 

References

  1. 1.
    de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305:2532–9.CrossRefGoogle Scholar
  2. 2.
    U.S. Renal Data System. USRDS 2015 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. Available at: http://www.usrds.org/adr.aspx. Accessed January 4, 2016.
  3. 3.
    American Diabetes Association. Standards of medical Care in Diabetes – 2016. Diabetes Care. 2016;39(Suppl. 1):S1–112.Google Scholar
  4. 4.
    Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care. 2014;37:2864–83.CrossRefGoogle Scholar
  5. 5.
    Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24(2):382–91.CrossRefGoogle Scholar
  6. 6.
    National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60(5):850–86.CrossRefGoogle Scholar
  7. 7.
    Speeckaert M, van Biesen W, Delanghe J, Slingerland R, Wiecek A, Heaf J, et al. Are there better alternative than haemoglobin A1c to estimate glycaemic control in the chronic kidney disease population? Nephrol Dial Transplant. 2014;29:2167–77.CrossRefGoogle Scholar
  8. 8.
    Rhee CM, Leung AM, Kovesdy CP, Lynch KE, Brent GA, Kalantar-Zadeh K. Updates on the Management of Diabetes in Dialysis patients. Semin Dial. 2014;27(2):135–45.CrossRefGoogle Scholar
  9. 9.
    Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ, et al. Translating the A1C assay into estimated average glucose values. Diabetes Care. 2008;31(8):1473–8.CrossRefGoogle Scholar
  10. 10.
    Hirsch IB, Amiel SA, Blumer IR, Bode BW, Edelman SV, Seley JJ, et al. Using multiple measures of glycemia to support individualized diabetes management: recommendations for clinicians, patients, and payers. Diabetes Technol Ther. 2012;14(11):973–83.CrossRefGoogle Scholar
  11. 11.
    Vos FE, Schollum JB, Coulter CV, Doyle TC, Duffull SB, Walker RJ. Red blood cell survival in long- term dialysis patients. Am J Kidney Dis. 2011;58(4):591–8.CrossRefGoogle Scholar
  12. 12.
    Nakao T, Matsumoto H, Okada T, Han M, Hidaka H, Yoshino M, et al. Influence of erythropoietin treatment on hemoglobin A1c levels in patients with chronic renal failure on hemodialysis. Intern Med. 1998;37(10):826–30.CrossRefGoogle Scholar
  13. 13.
    Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, Tabata T, et al. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. JASN. 2007;18(3):896–903.CrossRefGoogle Scholar
  14. 14.
    Ng JM, Jennings PE, Laboi P, Jayagopal V. Erythropoetin treatment significantly alters measured glycated haemoglobin (HbA1c). Diabet Med. 2008;25(2):239–40.CrossRefGoogle Scholar
  15. 15.
    Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin A(1c) in the management of diabetes. J Diabetes. 2009;1:9–17.CrossRefGoogle Scholar
  16. 16.
    Hoshino J, Mehrotra R, Rhee CM, Yamagata K, Ubara Y, Takaichi K, et al. Using hemoglobin A1c to derive mean blood glucose in peritoneal dialysis patients. Am J Nephrol. 2013;37(5):413–20.CrossRefGoogle Scholar
  17. 17.
    Zhang L, Krzentowski G, Albert A, Lefebvre PJ. Risk of developing retinopathy in diabetes control and complications trial type 1 diabetic patients with good or poor metabolic control. Diabetes Care. 2001;24:1275–9.CrossRefGoogle Scholar
  18. 18.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. NEJM. 1993;329(14):977–86.CrossRefGoogle Scholar
  19. 19.
    Hirsch IB, Brownlee M. Beyond hemoglobin A1c-need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303:2291–2.CrossRefGoogle Scholar
  20. 20.
    Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN, DCCT/EDIC Research Group. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial-revisited. Diabetes. 2008;57:995–1001.CrossRefGoogle Scholar
  21. 21.
    Okada T, Nakao T, Matsumoto H, Yamanaka T, Nagaoka Y, Tamekuni T. Influence of age and nutritional status on glycated albumin values in hemodialysis patients. Intern Med. 2009;48(17):1495–9.CrossRefGoogle Scholar
  22. 22.
    Freedman BI, Andries L, Shihabi ZK, Rocco MV, Byers JR, Cardona CY, et al. Glycated albumin and risk of death and hospitalizations in diabetic dialysis patients. CJASN. 2011;6(7):1635–43.CrossRefGoogle Scholar
  23. 23.
    Peacock TP, Shihabi ZK, Bleyer AJ, Dolbare EL, Byers JR, Knovich MA, et al. Comparison of glycated albumin and hemoglobin A(1c) levels in diabetic subjects on hemodialysis. Kidney Int. 2008;73(9):1062–8.CrossRefGoogle Scholar
  24. 24.
    Kim IY, Kim MJ, Lee DW, Lee SB, Rhee H, Song SH, et al. Glycated albumin is a more accurate glycaemic indicator than haemoglobin A1c in diabetic patients with pre-dialysis chronic kidney disease. Nephrology. 2015;20:715–20.CrossRefGoogle Scholar
  25. 25.
    Cohen RM, Holmes YR, Chenier TC, Joiner CH. Discordance between HbA1c and fructosamine: evidence for a glycosylation gap and its relation to diabetic nephropathy. Diabetes Care. 2003;26(1):163–7.CrossRefGoogle Scholar
  26. 26.
    Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan D, Peterson CM, et al. Tests of glycemia in diabetes. Diabetes Care. 2004;27(7):1761–73.CrossRefGoogle Scholar
  27. 27.
    Chen HS, Wu TE, Lin HD, Jap TS, Hsiao LC, Lee SH, et al. Hemoglobin A(1c) and fructosamine for assessing glycemic control in diabetic patients with CKD stage 3 and 4. Am J Kidney Dis. 2010;55(5):867–74.CrossRefGoogle Scholar
  28. 28.
    Joy MS, Cefalu WT, Hogan SL, Nachman PH. Long-term glycemic control measurements in diabetic patients receiving hemodialysis. Am J Kidney Dis. 2002;39(2):297–307.CrossRefGoogle Scholar
  29. 29.
    Shafi T, Sozio SM, Plantinga LC, Jaar BG, Kim ET, Parekh RS, et al. Serum fructosamine and glycated albumin and risk of mortality and clinical outcomes in hemodialysis patients. Diabetes Care. 2013;36(6):1522–33.CrossRefGoogle Scholar
  30. 30.
    Yamanouchi T, Ogata N, Tagaya T, Kawasaki T, Sekino N, Funato H, et al. Clinical usefulness of serum 1,5-anhydroglucitol in monitoring glycaemic control. Lancet. 1996;347(9014):1514–8.CrossRefGoogle Scholar
  31. 31.
    Monnier L, Wojtusciszyn A, Colette C, Owens D. The contribution of glucose variability to asymptomatic hypoglycemia in persons with type 2 diabetes. Diabetes Technol Ther. 2011;13:813–8.CrossRefGoogle Scholar
  32. 32.
    Wright L, Hirsch IB, Gooley T, Brown Z. 1, 5-Anhydroglucitol and neonatal complications in pregnancy complicated by diabetes. Endocr Pract. 2015;21(7):725–33.CrossRefGoogle Scholar
  33. 33.
    Fujisawa T, Ikegami H, Tsutsui T, Kawaguchi Y, Ueda H, Shintani M, et al. Renal tubular function affects glycosuria-related urinary excretion of 1,5-anhydroglucitol. Diabetes Care. 1999;22(5):863–4.CrossRefGoogle Scholar
  34. 34.
    Emoto M, Tabata T, Inoue T, Nishizawa Y, Morii H. Plasma 1,5-anhydroglucitol concentration in patients with end-stage renal disease with and without diabetes mellitus. Nephron. 1992;61(2):181–6.CrossRefGoogle Scholar
  35. 35.
    Kim WJ, Park C-Y, Lee KB, Park SE, Rhee EJ, Lee WY, et al. Serum 1,5-anhydroglucitol concentrations are a reliable index of glycemic control in type 2 diabetes with mild or moderate renal dysfunction. Diabetes Care. 2012;35(2):281–6.CrossRefGoogle Scholar
  36. 36.
    GlycoMark, Inc. Clinical Guide: 1,5-anhydroglucitol (1,5-AG) blood test. Available at: http://www.glycomark.com/wp-content/uploads/2015/10/GlycoMark_Clinical_Guide.pdf. Accessed January 4, 2016.
  37. 37.
    Jung HS, Kim HI, Kim MJ, Yoon JW, Ahn HY, Cho YM, et al. Analysis of hemodialysis-associated hypoglycemia in patients with type 2 diabetes using a continuous glucose monitoring system. Diabetes Tehcnol Ther. 2010;12(10):801–7.CrossRefGoogle Scholar
  38. 38.
    Continuous Glucose Monitoring to Assess Glycemia in Chronic Kidney Disease – Changing Glucose Management (CANDY-CANE). Available at: ClinicialTrials.gov. Accessed January 4, 2016.
  39. 39.
    U.K. Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.CrossRefGoogle Scholar
  40. 40.
    Action to Control Cardiovascular Risk in Diabetes (ACCORD) Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.CrossRefGoogle Scholar
  41. 41.
    ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.CrossRefGoogle Scholar
  42. 42.
    Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.CrossRefGoogle Scholar
  43. 43.
    Hayward RA, Reaven PD, Emanuele VN, VADT Investigators. Follow-up glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(10):978.PubMedGoogle Scholar
  44. 44.
    Moen MJ, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:1121–7.CrossRefGoogle Scholar
  45. 45.
    Miller ME, Bonds DE, Gerstein HC, Seaquist ER, Bergenstal RM, Calles-Escandon J, et al. The effects of baseline characteristics, glycaemia treatment approach, and glycated haemoglobin concentration on the risk of severe hypoglycaemia: post hoc epidemiological analysis of the ACCORD study. BMJ. 2010;340:b5444.  https://doi.org/10.1136/bmj.b5444.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63(3):793–808.CrossRefGoogle Scholar
  47. 47.
    Neumiller JJ, Hirsch IB. Management of hyperglycemia in diabetic kidney disease. Diabetes Spectr. 2015;28(3):214–9.CrossRefGoogle Scholar
  48. 48.
    Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch Intern Med. 2011;171(21):1920–7.CrossRefGoogle Scholar
  49. 49.
    Ramirez SP, McCullough KP, Thumma JR, Nelson RG, Morgenstern H, Gillespie BW, et al. Hemoglobin A(1c) levels and mortality in the diabetic hemodialysis population: findings from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Diabetes Care. 2012;35(12):2527–32.CrossRefGoogle Scholar
  50. 50.
    Ricks J, Molnar MZ, Kovesdy CP, Shah A, Nissenson AR, Williams M, et al. Glycemic control and cardiovascular mortality in hemodialysis patients with diabetes: a 6-year cohort study. Diabetes. 2012;61(3):708–15.CrossRefGoogle Scholar
  51. 51.
    Duong U, Mehrotra R, Molnar MZ, Noori N, Kovesdy CP, Nissenson AR, et al. Glycemic control and survival in peritoneal dialysis patients with diabetes mellitus. Clin J Am Soc Nephrol (CJASN). 2011;6(5):1041–8.CrossRefGoogle Scholar
  52. 52.
    Kalantar-Zadeh K. A critical evaluation of glycated protein parameters in advanced nephropathy: a matter of life or death: A1C remains the gold standard outcome predictor in diabetic dialysis patients. Counterpoint. Diabetes Care. 2012;35(7):1625–8.CrossRefGoogle Scholar
  53. 53.
    Chow E, Bernjak A, Williams S, Fawdry RA, Hibbert S, Freeman J, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63:1738–47.CrossRefGoogle Scholar
  54. 54.
    Hill CJ, Maxwell AP, Cardwell CR, Freedman BI, Tonelli M, Emoto M, et al. Glycated hemoglobin and risk of death in diabetic patients treated with hemodialysis: a meta-analysis. Am J Kidney Dis. 2014;63(1):84–94.CrossRefGoogle Scholar
  55. 55.
    Molnar MZ, Kovesdy CP, Bunnapradist S, Streja E, Mehrotra R, Krishnan M, et al. Associations of pretransplant serum albumin with post-transplant outcomes in kidney transplant recipients. Am J Transplant. 2011;11(5):1006–15.CrossRefGoogle Scholar
  56. 56.
    Kilpatrick ES, Rigby AS, Goode K, Atkin SL. Relating mean blood glucose and glucose variability to the risk of multiple episodes of hypoglycemia in type 1 diabetes. Diabetologia. 2007;50:2553–61.CrossRefGoogle Scholar
  57. 57.
    Williams ME, Garg R, Wang W, Lacson R, Maddux F, Lacson E Jr. High hemoglobin A1c levels and glycemic variability increase risk of severe hypoglycemia in diabetic hemodialysis patients. Hemodial Int. 2014;18(2):423–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PharmacotherapyWashington State UniversitySpokaneUSA
  2. 2.Division of Metabolism, Endocrinology, and NutritionUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations