Advertisement

Nutrition and Endocrine Disorders in Kidney Disease

  • Anuja Shah
  • Joel Kopple
Chapter

Abstract

The term protein-energy wasting (PEW) describes the decrease in body protein mass and sources of energy reserves that occurs commonly in advanced chronic kidney disease (CKD) patients. PEW is generally reflected by muscle wasting and reduced fat mass. There are many non-nutritional causes for protein and fat depletion in CKD patients, including inflammation, concurrent illnesses, acidemia, losses of nutrients from dialysis or in urine, the accumulation of potentially catabolic metabolites, possibly impaired metabolic activity of the kidney, side effects of medications, and increased circulating levels or altered activity of catabolic or anabolic hormones. The high prevalence of protein-energy disorders in CKD patients has important implications for their medical management.

Keywords

Nutrition Protein-energy wasting Chronic kidney disease Parathyroid hormone Vitamin D Testosterone Glucocorticoids Growth hormone Insulin Ghrelin Obestatin Adipokines Thyroid hormone 

References

  1. 1.
    Beddhu S, Pappas LM, Ramkumar N, Samore M. Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol. 2003;14(9):2366–72.PubMedGoogle Scholar
  2. 2.
    Kalantar-Zadeh K, Block G, McAllister CJ, Humphreys MH, Kopple JD. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am J Clin Nutr. 2004;80(2):299–307.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Mehrotra R, Kopple JD. Causes of protein-energy malnutrition in chronic renal failure. Baltimore: Lippincott Williams & Wilkins; 2012.Google Scholar
  4. 4.
    Patten BM, Bilezikian JP, Mallette LE, Prince A, Engel WK, Aurbach GD. Neuromuscular disease in primary hyperparathyroidism. Ann Intern Med. 1974;80(2):182–93.PubMedGoogle Scholar
  5. 5.
    Weiner M, Epstein FH. Signs and symptoms of electrolyte disorders. Yale J Biol Med. 1970;43(2):76–109.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D. Myopathy in chronic renal failure. Q J Med. 1974;43(172):509–24.PubMedGoogle Scholar
  7. 7.
    Garber AJ. Effects of parathyroid hormone on skeletal muscle protein and amino acid metabolism in the rat. J Clin Invest. 1983;71(6):1806–21.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Baczynski R, Massry SG, Magott M, el-Belbessi S, Kohan R, Brautbar N. Effect of parathyroid hormone on energy metabolism of skeletal muscle. Kidney Int. 1985;28(5):722–7.PubMedGoogle Scholar
  9. 9.
    Smogorzewski M, Piskorska G, Borum PR, Massry SG. Chronic renal failure, parathyroid hormone and fatty acids oxidation in skeletal muscle. Kidney Int. 1988;33(2):555–60.PubMedGoogle Scholar
  10. 10.
    Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100–4.  https://doi.org/10.1038/nature13528.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W, Lanske B, Hodin RA, Spiegelman BM. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 2016;23(2):315–23.  https://doi.org/10.1016/j.cmet.2015.11.003.PubMedGoogle Scholar
  12. 12.
    Cuppari L, de Carvalho AB, Avesani CM, Kamimura MA, Dos Santos Lobao RR, Draibe SA. Increased resting energy expenditure in hemodialysis patients with severe hyperparathyroidism. J Am Soc Nephrol. 2004;15(11):2933–9.  https://doi.org/10.1097/01.ASN.0000141961.49723.BC.PubMedGoogle Scholar
  13. 13.
    Rezende LT, Cuppari L, Carvalho AB, Canziani ME, Manfredi SR, Cendoroglo M, Sigulem DM, Draibe SA. Nutritional status of hemodialysis patients with secondary hyperparathyroidism. Braz J Med Biol Res. 2000;33(11):1305–11.PubMedGoogle Scholar
  14. 14.
    Chen C, Wu H, Zhong L, Wang X, Xing ZJ, Gao BH. Impacts of parathyroidectomy on renal anemia and nutritional status of hemodialysis patients with secondary hyperparathyroidism. Int J Clin Exp Med. 2015;8(6):9830–8.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yasunaga C, Nakamoto M, Matsuo K, Nishihara G, Yoshida T, Goya T. Effects of a parathyroidectomy on the immune system and nutritional condition in chronic dialysis patients with secondary hyperparathyroidism. Am J Surg. 1999;178(4):332–6.PubMedGoogle Scholar
  16. 16.
    Campos SR, Gusmao MH, Almeida AF, Pereira LJ, Sampaio LR, Medeiros JM. Nutritional status and food intake of continuous peritoneal dialysis patients with and without secondary hyperparathyroidism. J Bras Nefrol. 2012;34(2):170–7.PubMedGoogle Scholar
  17. 17.
    Di Iorio BR, Minutolo R, De Nicola L, Bellizzi V, Catapano F, Iodice C, Rubino R, Conte G. Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int. 2003;64(5):1822–8.  https://doi.org/10.1046/j.1523-1755.2003.00282.x.PubMedGoogle Scholar
  18. 18.
    Malvy D, Maingourd C, Pengloan J, Bagros P, Nivet H. Effects of severe protein restriction with ketoanalogues in advanced renal failure. J Am Coll Nutr. 1999;18(5):481–6.PubMedGoogle Scholar
  19. 19.
    Kerstetter JE, O’Brien KO, Insogna KL. Low protein intake: the impact on calcium and bone homeostasis in humans. J Nutr. 2003;133(3):855S–61S.Google Scholar
  20. 20.
    Molina P, Carrero JJ, Bover J, Chauveau P, Mazzaferro S, Torres PU. Vitamin D, a modulator of musculoskeletal health in chronic kidney disease. J Cachexia Sarcopenia Muscle. 2017;8:686.  https://doi.org/10.1002/jcsm.12218.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, Mason RS, Clifton-Bligh RJ, Gunton JE. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology. 2014;155(9):3227–37.  https://doi.org/10.1210/en.2014-1016.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ceglia L, Harris SS. Vitamin D and its role in skeletal muscle. Calcif Tissue Int. 2013;92(2):151–62.  https://doi.org/10.1007/s00223-012-9645-y.PubMedGoogle Scholar
  23. 23.
    Sinha A, Hollingsworth KG, Ball S, Cheetham T. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab. 2013;98(3):E509–13.  https://doi.org/10.1210/jc.2012-3592.PubMedGoogle Scholar
  24. 24.
    Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011;152(8):2976–86.  https://doi.org/10.1210/en.2011-0159.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Harter HR, Birge SJ, Martin KJ, Klahr S, Karl IE. Effects of vitamin D metabolites on protein catabolism of muscle from uremic rats. Kidney Int. 1983;23(3):465–72.PubMedGoogle Scholar
  26. 26.
    Gordon PL, Doyle JW, Johansen KL. Association of 1,25-dihydroxyvitamin D levels with physical performance and thigh muscle cross-sectional area in chronic kidney disease stage 3 and 4. J Ren Nutr. 2012;22(4):423–33.  https://doi.org/10.1053/j.jrn.2011.10.006. PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zahed N, Chehrazi S, Falaknasi K. The evaluation of relationship between vitamin D and muscle power by micro manual muscle tester in end-stage renal disease patients. Saudi J Kidney Dis Transpl. 2014;25(5):998–1003.PubMedGoogle Scholar
  28. 28.
    Blair D, Byham-Gray L, Lewis E, McCaffrey S. Prevalence of vitamin D [25(OH)D] deficiency and effects of supplementation with ergocalciferol (vitamin D2) in stage 5 chronic kidney disease patients. J Ren Nutr. 2008;18(4):375–82.  https://doi.org/10.1053/j.jrn.2008.04.008. PubMedGoogle Scholar
  29. 29.
    Miskulin DC, Majchrzak K, Tighiouart H, Muther RS, Kapoian T, Johnson DS, Weiner DE. Ergocalciferol supplementation in hemodialysis patients with vitamin D deficiency: a randomized clinical trial. J Am Soc Nephrol. 2016;27(6):1801–10.  https://doi.org/10.1681/ASN.2015040468.PubMedGoogle Scholar
  30. 30.
    Schoenfeld PJ MJ, Barnes B, Teitelbaum SL. Amelioration of myopathy with 25-hydroxyvitamin D3 therapy [25(OH)D3] in patients on chronic hemodialysis. Abstracts Third Workshop on Vitamin D, Asilomar, 1977. p. 160.Google Scholar
  31. 31.
    Breuer CB, Florini JR. Amino acid incorporation into protein by cell-free systems from rat skeletal muscle. IV. Effects of animal age, androgens, and anabolic agents on activity of muscle ribosomes. Biochemistry. 1965;4(8):1544–50.PubMedGoogle Scholar
  32. 32.
    Kadi F. Adaptation of human skeletal muscle to training and anabolic steroids. Acta Physiol Scand Suppl. 2000;646:1–52.PubMedGoogle Scholar
  33. 33.
    Ferrando AA, Tipton KD, Doyle D, Phillips SM, Cortiella J, Wolfe RR. Testosterone injection stimulates net protein synthesis but not tissue amino acid transport. Am J Phys. 1998;275(5 Pt 1):E864–71.Google Scholar
  34. 34.
    Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R, Bhasin S. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Phys Endocrinol Metab. 2002;283(1):E154–64.  https://doi.org/10.1152/ajpendo.00502.2001.Google Scholar
  35. 35.
    Kadi F. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol. 2008;154(3):522–8.  https://doi.org/10.1038/bjp.2008.118.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Moss FP, Leblond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 1971;170(4):421–35.  https://doi.org/10.1002/ar.1091700405.PubMedGoogle Scholar
  37. 37.
    Sinha-Hikim I, Roth SM, Lee MI, Bhasin S. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Phys Endocrinol Metab. 2003;285(1):E197–205.  https://doi.org/10.1152/ajpendo.00370.2002.Google Scholar
  38. 38.
    Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab. 2006;91(8):3024–33.  https://doi.org/10.1210/jc.2006-0357.PubMedGoogle Scholar
  39. 39.
    Bhasin S, Taylor WE, Singh R, Artaza J, Sinha-Hikim I, Jasuja R, Choi H, Gonzalez-Cadavid NF. The mechanisms of androgen effects on body composition: mesenchymal pluripotent cell as the target of androgen action. J Gerontol A Biol Sci Med Sci. 2003;58(12):M1103–10.PubMedGoogle Scholar
  40. 40.
    Doumit ME, Cook DR, Merkel RA. Testosterone up-regulates androgen receptors and decreases differentiation of porcine myogenic satellite cells in vitro. Endocrinology. 1996;137(4):1385–94.  https://doi.org/10.1210/endo.137.4.8625915.PubMedGoogle Scholar
  41. 41.
    Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Phys Endocrinol Metab. 2002;282(3):E601–7.  https://doi.org/10.1152/ajpendo.00362.2001.Google Scholar
  42. 42.
    De Pergola G. The adipose tissue metabolism: role of testosterone and dehydroepiandrosterone. Int J Obes Relat Metab Disord. 2000;24(Suppl 2):S59–63.PubMedGoogle Scholar
  43. 43.
    Xu X, De Pergola G, Eriksson PS, Fu L, Carlsson B, Yang S, Eden S, Bjorntorp P. Postreceptor events involved in the up-regulation of beta-adrenergic receptor mediated lipolysis by testosterone in rat white adipocytes. Endocrinology. 1993;132(4):1651–7.  https://doi.org/10.1210/endo.132.4.8384992.PubMedGoogle Scholar
  44. 44.
    Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med. 1995;27(4):435–8.PubMedGoogle Scholar
  45. 45.
    Carrero JJ, Qureshi AR, Nakashima A, Arver S, Parini P, Lindholm B, Barany P, Heimburger O, Stenvinkel P. Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant. 2011;26(1):184–90.  https://doi.org/10.1093/ndt/gfq397.PubMedGoogle Scholar
  46. 46.
    Cigarran S, Pousa M, Castro MJ, Gonzalez B, Martinez A, Barril G, Aguilera A, Coronel F, Stenvinkel P, Carrero JJ. Endogenous testosterone, muscle strength, and fat-free mass in men with chronic kidney disease. J Ren Nutr. 2013;23(5):e89–95.  https://doi.org/10.1053/j.jrn.2012.08.007. PubMedGoogle Scholar
  47. 47.
    Cobo G, Cordeiro AC, Amparo FC, Amodeo C, Lindholm B, Carrero JJ. Visceral adipose tissue and leptin hyperproduction are associated with hypogonadism in men with chronic kidney disease. J Ren Nutr. 2017;27(4):243–8.  https://doi.org/10.1053/j.jrn.2017.01.023. PubMedGoogle Scholar
  48. 48.
    Muller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, Gluer CC, Kehayias JJ, Kiosz D, Bosy-Westphal A. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 2015;102(4):807–19.  https://doi.org/10.3945/ajcn.115.109173.PubMedGoogle Scholar
  49. 49.
    Khurana KK, Navaneethan SD, Arrigain S, Schold JD, Nally JV Jr, Shoskes DA. Serum testosterone levels and mortality in men with CKD stages 3-4. Am J Kidney Dis. 2014;64(3):367–74.  https://doi.org/10.1053/j.ajkd.2014.03.010. PubMedPubMedCentralGoogle Scholar
  50. 50.
    Carrero JJ, Qureshi AR, Parini P, Arver S, Lindholm B, Barany P, Heimburger O, Stenvinkel P. Low serum testosterone increases mortality risk among male dialysis patients. J Am Soc Nephrol. 2009;20(3):613–20.  https://doi.org/10.1681/ASN.2008060664. PubMedPubMedCentralGoogle Scholar
  51. 51.
    Johansen KL, Mulligan K, Schambelan M. Anabolic effects of nandrolone decanoate in patients receiving dialysis: a randomized controlled trial. JAMA. 1999;281(14):1275–81.PubMedGoogle Scholar
  52. 52.
    Macdonald JH, Marcora SM, Jibani MM, Kumwenda MJ, Ahmed W, Lemmey AB. Nandrolone decanoate as anabolic therapy in chronic kidney disease: a randomized phase II dose-finding study. Nephron Clin Pract. 2007;106(3):c125–35.  https://doi.org/10.1159/000103000.PubMedGoogle Scholar
  53. 53.
    Eiam-Ong S, Buranaosot S, Eiam-Ong S, Wathanavaha A, Pansin P. Nutritional effect of nandrolone decanoate in predialysis patients with chronic kidney disease. J Ren Nutr. 2007;17(3):173–8.  https://doi.org/10.1053/j.jrn.2007.01.001.PubMedGoogle Scholar
  54. 54.
    Hu Z, Wang H, Lee IH, Du J, Mitch WE. Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest. 2009;119(10):3059–69.  https://doi.org/10.1172/JCI38770.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Marinovic AC, Zheng B, Mitch WE, Price SR. Tissue-specific regulation of ubiquitin (UbC) transcription by glucocorticoids: in vivo and in vitro analyses. Am J Physiol Renal Physiol. 2007;292(2):F660–6.  https://doi.org/10.1152/ajprenal.00178.2006.PubMedGoogle Scholar
  56. 56.
    Lane NE, Yao W. Glucocorticoid-induced bone fragility. Ann N Y Acad Sci. 2010;1192:81–3.  https://doi.org/10.1111/j.1749-6632.2009.05228.x.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Mauras N. Can growth hormone counteract the catabolic effects of steroids? Horm Res. 2009;72(Suppl 1):48–54.  https://doi.org/10.1159/000229764. PubMedGoogle Scholar
  58. 58.
    Roelfsema V, Clark RG. The growth hormone and insulin-like growth factor axis: its manipulation for the benefit of growth disorders in renal failure. J Am Soc Nephrol. 2001;12(6):1297–306.PubMedGoogle Scholar
  59. 59.
    Kopchick JJ. Growth hormone. In: Degroot LJ, Jameson JL, editors. Endocrinology part III basic physiology. 4th ed. Philadelphia: Saunders; 2001.Google Scholar
  60. 60.
    Moller N, Copeland KC, Nair KS. Growth hormone effects on protein metabolism. Endocrinol Metab Clin N Am. 2007;36(1):89–100.  https://doi.org/10.1016/j.ecl.2006.11.001.Google Scholar
  61. 61.
    Djurhuus CB, Gravholt CH, Nielsen S, Pedersen SB, Moller N, Schmitz O. Additive effects of cortisol and growth hormone on regional and systemic lipolysis in humans. Am J Phys Endocrinol Metab. 2004;286(3):E488–94.  https://doi.org/10.1152/ajpendo.00199.2003.Google Scholar
  62. 62.
    Kopple JD, Massry SG. Kopple and Massry’s nutritional management of renal disease. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2004.Google Scholar
  63. 63.
    Hirschberg R, Adler S. Insulin-like growth factor system and the kidney: physiology, pathophysiology, and therapeutic implications. Am J Kidney Dis. 1998;31(6):901–19.  https://doi.org/10.1053/ajkd.1998.v31.pm9631833. PubMedGoogle Scholar
  64. 64.
    Daughaday W. Growth hormone, normal synthesis, secretion, control, and mechanisms of action. Edition ed. In: Degroot LJ, Larry Jameson J, editors. Endocrinology. Philadelpthiia: Saunders; 1989.Google Scholar
  65. 65.
    Fouque D, Peng SC, Kopple JD. Impaired metabolic response to recombinant insulin-like growth factor-1 in dialysis patients. Kidney Int. 1995;47(3):876–83.PubMedGoogle Scholar
  66. 66.
    Ding H, Gao XL, Hirschberg R, Vadgama JV, Kopple JD. Impaired actions of insulin-like growth factor 1 on protein synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect. J Clin Invest. 1996;97(4):1064–75.  https://doi.org/10.1172/JCI118499.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Yap J, Tsao T, Fawcett J, Fielder PJ, Keller GA, Rabkin R. Effect of insulin-like growth factor binding proteins on the response of proximal tubular cells to insulin-like growth factor-I. Kidney Int. 1997;52(5):1216–23.PubMedGoogle Scholar
  68. 68.
    Tonshoff B, Blum WF, Mehls O. Insulin-like growth factors (IGF) and IGF binding proteins in children with chronic renal failure. Prog Growth Factor Res. 1995;6(2–4):481–91.PubMedGoogle Scholar
  69. 69.
    Tonshoff B, Eden S, Weiser E, Carlsson B, Robinson IC, Blum WF, Mehls O. Reduced hepatic growth hormone (GH) receptor gene expression and increased plasma GH binding protein in experimental uremia. Kidney Int. 1994;45(4):1085–92.PubMedGoogle Scholar
  70. 70.
    Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest. 2001;108(3):467–75.  https://doi.org/10.1172/JCI11895.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Palmblad J, Levi L, Burger A, Melander A, Westgren U, von Schenck H, Skude G. Effects of total energy withdrawal (fasting) on thelevels of growth hormone, thyrotropin, cortisol, adrenaline, noradrenaline, T4, T3, and rT3 in healthy males. Acta Med Scand. 1977;201(1–2):15–22.PubMedGoogle Scholar
  72. 72.
    Rabkin R. Nutrient regulation of insulin-like growth factor-I. Miner Electrolyte Metab. 1997;23(3–6):157–60.PubMedGoogle Scholar
  73. 73.
    Ziegler TR, Lazarus JM, Young LS, Hakim R, Wilmore DW. Effects of recombinant human growth hormone in adults receiving maintenance hemodialysis. J Am Soc Nephrol. 1991;2(6):1130–5.PubMedGoogle Scholar
  74. 74.
    Schulman G, Wingard RL, Hutchison RL, Lawrence P, Hakim RM. The effects of recombinant human growth hormone and intradialytic parenteral nutrition in malnourished hemodialysis patients. Am J Kidney Dis. 1993;21(5):527–34.PubMedGoogle Scholar
  75. 75.
    Ikizler TA, Wingard RL, Breyer JA, Schulman G, Parker RA, Hakim RM. Short-term effects of recombinant human growth hormone in CAPD patients. Kidney Int. 1994;46(4):1178–83.PubMedGoogle Scholar
  76. 76.
    Garibotto G, Barreca A, Russo R, Sofia A, Araghi P, Cesarone A, Malaspina M, Fiorini F, Minuto F, Tizianello A. Effects of recombinant human growth hormone on muscle protein turnover in malnourished hemodialysis patients. J Clin Invest. 1997;99(1):97–105.  https://doi.org/10.1172/JCI119139.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Iglesias P, Diez JJ, Fernandez-Reyes MJ, Aguilera A, Burgues S, Martinez-Ara J, Miguel JL, Gomez-Pan A, Selgas R. Recombinant human growth hormone therapy in malnourished dialysis patients: a randomized controlled study. Am J Kidney Dis. 1998;32(3):454–63.PubMedGoogle Scholar
  78. 78.
    Pupim LB, Kent P, Caglar K, Shyr Y, Hakim RM, Ikizler TA. Improvement in nutritional parameters after initiation of chronic hemodialysis. Am J Kidney Dis. 2002;40(1):143–51.  https://doi.org/10.1053/ajkd.2002.33923. PubMedGoogle Scholar
  79. 79.
    Kopple JD, Brunori G, Leiserowitz M, Fouque D. Growth hormone induces anabolism in malnourished maintenance haemodialysis patients. Nephrol Dial Transplant. 2005;20(5):952–8.  https://doi.org/10.1093/ndt/gfh731. PubMedGoogle Scholar
  80. 80.
    Hansen TB, Gram J, Jensen PB, Kristiansen JH, Ekelund B, Christiansen JS, Pedersen FB. Influence of growth hormone on whole body and regional soft tissue composition in adult patients on hemodialysis. A double-blind, randomized, placebo-controlled study. Clin Nephrol. 2000;53(2):99–107.PubMedGoogle Scholar
  81. 81.
    Feldt-Rasmussen B, Lange M, Sulowicz W, Gafter U, Lai KN, Wiedemann J, Christiansen JS, El Nahas M. Growth hormone treatment during hemodialysis in a randomized trial improves nutrition, quality of life, and cardiovascular risk. J Am Soc Nephrol. 2007;18(7):2161–71.  https://doi.org/10.1681/ASN.2006111207.PubMedGoogle Scholar
  82. 82.
    Kopple JD, Cheung AK, Christiansen JS, Djurhuus CB, El Nahas M, Feldt-Rasmussen B, Mitch WE, Wanner C, Gothberg M, Ikizler TA. OPPORTUNITY™: a large-scale randomized clinical trial of growth hormone in hemodialysis patients. Nephrol Dial Transplant. 2011;26(12):4095–103.  https://doi.org/10.1093/ndt/gfr363.PubMedGoogle Scholar
  83. 83.
    Fouque D, Peng SC, Shamir E, Kopple JD. Recombinant human insulin-like growth factor-1 induces an anabolic response in malnourished CAPD patients. Kidney Int. 2000;57(2):646–54.  https://doi.org/10.1046/j.1523-1755.2000.00886.x.PubMedGoogle Scholar
  84. 84.
    Nilsson E, Carrero JJ, Heimburger O, Hellberg O, Lindholm B, Stenvinkel P. A cohort study of insulin-like growth factor 1 and mortality in haemodialysis patients. Clin Kidney J. 2016;9(1):148–52.  https://doi.org/10.1093/ckj/sfv118.PubMedGoogle Scholar
  85. 85.
    Pupim LB, Heimburger O, Qureshi AR, Ikizler TA, Stenvinkel P. Accelerated lean body mass loss in incident chronic dialysis patients with diabetes mellitus. Kidney Int. 2005;68(5):2368–74.  https://doi.org/10.1111/j.1523-1755.2005.00699.x.PubMedGoogle Scholar
  86. 86.
    Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol. 2016;311(6):F1087–F108.  https://doi.org/10.1152/ajprenal.00340.2016. PubMedGoogle Scholar
  87. 87.
    Guarnieri G, Zanetti M, Vinci P, Cattin MR, Barazzoni R. Insulin resistance in chronic uremia. J Ren Nutr. 2009;19(1):20–4.  https://doi.org/10.1053/j.jrn.2008.11.014.PubMedGoogle Scholar
  88. 88.
    Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169–80.  https://doi.org/10.1053/j.gastro.2007.03.059.PubMedGoogle Scholar
  89. 89.
    Kurella M, Lo JC, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005;16(7):2134–40.  https://doi.org/10.1681/ASN.2005010106.PubMedGoogle Scholar
  90. 90.
    Siew ED, Pupim LB, Majchrzak KM, Shintani A, Flakoll PJ, Ikizler TA. Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int. 2007;71(2):146–52.  https://doi.org/10.1038/sj.ki.5001984.PubMedGoogle Scholar
  91. 91.
    Bailey JL. Insulin resistance and muscle metabolism in chronic kidney disease. ISRN Endocrinol. 2013;2013:329606.  https://doi.org/10.1155/2013/329606.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Price SR, Gooch JL, Donaldson SK, Roberts-Wilson TK. Muscle atrophy in chronic kidney disease results from abnormalities in insulin signaling. J Ren Nutr. 2010;20(5 Suppl):S24–8.  https://doi.org/10.1053/j.jrn.2010.05.007. PubMedPubMedCentralGoogle Scholar
  93. 93.
    Cianciaruso B, Brunori G, Traverso G, Panarello G, Enia G, Strippoli P, de Vecchi A, Querques M, Viglino E, Vonesh E, et al. Nutritional status in the elderly patient with uraemia. Nephrol Dial Transplant. 1995;10(Suppl 6):65–8.PubMedGoogle Scholar
  94. 94.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.  https://doi.org/10.1038/45230.PubMedGoogle Scholar
  95. 95.
    Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005;85(2):495–522.  https://doi.org/10.1152/physrev.00012.2004.PubMedGoogle Scholar
  96. 96.
    Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–8.  https://doi.org/10.1038/35051587.PubMedGoogle Scholar
  97. 97.
    Marzullo P, Caumo A, Savia G, Verti B, Walker GE, Maestrini S, Tagliaferri A, Di Blasio AM, Liuzzi A. Predictors of postabsorptive ghrelin secretion after intake of different macronutrients. J Clin Endocrinol Metab. 2006;91(10):4124–30.  https://doi.org/10.1210/jc.2006-0270.PubMedGoogle Scholar
  98. 98.
    Baldelli R, Bellone S, Castellino N, Petri A, Rapa A, Vivenza D, Bellone J, Broglio F, Ghigo E, Bona G. Oral glucose load inhibits circulating ghrelin levels to the same extent in normal and obese children. Clin Endocrinol. 2006;64(3):255–9.  https://doi.org/10.1111/j.1365-2265.2006.02441.x.Google Scholar
  99. 99.
    Mafra D, Guebre-Egziabher F, Fouque D. Endocrine role of stomach in appetite regulation in chronic kidney disease: about ghrelin and obestatin. J Ren Nutr. 2010;20(2):68–73.  https://doi.org/10.1053/j.jrn.2009.08.002.PubMedGoogle Scholar
  100. 100.
    Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, Nozoe S, Hosoda H, Kangawa K, Matsukura S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab. 2002;87(1):240–4.  https://doi.org/10.1210/jcem.87.1.8129.PubMedGoogle Scholar
  101. 101.
    Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.PubMedGoogle Scholar
  102. 102.
    Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649–61.PubMedGoogle Scholar
  103. 103.
    Lanfranco F, Motta G, Baldi M, Gasco V, Grottoli S, Benso A, Broglio F, Ghigo E. Ghrelin and anterior pituitary function. Front Horm Res. 2010;38:206–11.  https://doi.org/10.1159/000318512.PubMedGoogle Scholar
  104. 104.
    Inhoff T, Monnikes H, Noetzel S, Stengel A, Goebel M, Dinh QT, Riedl A, Bannert N, Wisser AS, Wiedenmann B, et al. Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats. Peptides. 2008;29(12):2159–68.  https://doi.org/10.1016/j.peptides.2008.09.014.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Mak RH, Cheung W, Purnell J. Ghrelin in chronic kidney disease: too much or too little? Perit Dial Int. 2007;27(1):51–5.PubMedGoogle Scholar
  106. 106.
    Buscher AK, Buscher R, Hauffa BP, Hoyer PF. Alterations in appetite-regulating hormones influence protein-energy wasting in pediatric patients with chronic kidney disease. Pediatr Nephrol. 2010;25(11):2295–301.  https://doi.org/10.1007/s00467-010-1588-9.PubMedGoogle Scholar
  107. 107.
    Borges N, Moraes C, Barros AF, Carraro-Eduardo JC, Fouque D, Mafra D. Acyl-ghrelin and obestatin plasma levels in different stages of chronic kidney disease. J Ren Nutr. 2014;24(2):100–4.  https://doi.org/10.1053/j.jrn.2013.11.005. PubMedGoogle Scholar
  108. 108.
    Iglesias P, Diez JJ, Fernandez-Reyes MJ, Codoceo R, Alvarez-Fidalgo P, Bajo MA, Aguilera A, Selgas R. Serum ghrelin concentrations in patients with chronic renal failure undergoing dialysis. Clin Endocrinol. 2006;64(1):68–73.  https://doi.org/10.1111/j.1365-2265.2005.02418.x.Google Scholar
  109. 109.
    Yoshimoto A, Mori K, Sugawara A, Mukoyama M, Yahata K, Suganami T, Takaya K, Hosoda H, Kojima M, Kangawa K, et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol. 2002;13(11):2748–52.PubMedGoogle Scholar
  110. 110.
    Barazzoni R, Gortan Cappellari G, Zanetti M, Guarnieri G. Ghrelin and muscle metabolism in chronic uremia. J Ren Nutr. 2012;22(1):171–5.  https://doi.org/10.1053/j.jrn.2011.10.017. PubMedGoogle Scholar
  111. 111.
    Deboer MD, Zhu X, Levasseur PR, Inui A, Hu Z, Han G, Mitch WE, Taylor JE, Halem HA, Dong JZ, et al. Ghrelin treatment of chronic kidney disease: improvements in lean body mass and cytokine profile. Endocrinology. 2008;149(2):827–35.  https://doi.org/10.1210/en.2007-1046.PubMedGoogle Scholar
  112. 112.
    Wynne K, Giannitsopoulou K, Small CJ, Patterson M, Frost G, Ghatei MA, Brown EA, Bloom SR, Choi P. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J Am Soc Nephrol. 2005;16(7):2111–8.  https://doi.org/10.1681/ASN.2005010039. PubMedGoogle Scholar
  113. 113.
    Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science. 2005;310(5750):996–9.  https://doi.org/10.1126/science.1117255.
  114. 114.
    Lagaud GJ, Young A, Acena A, Morton MF, Barrett TD, Shankley NP. Obestatin reduces food intake and suppresses body weight gain in rodents. Biochem Biophys Res Commun. 2007;357(1):264–9.  https://doi.org/10.1016/j.bbrc.2007.03.138.PubMedGoogle Scholar
  115. 115.
    Oner-Iyidogan Y, Gurdol F, Kocak H, Oner P, Cetinalp-Demircan P, Caliskan Y, Kocak T, Turkmen A. Appetite-regulating hormones in chronic kidney disease patients. J Ren Nutr. 2011;21(4):316–21.  https://doi.org/10.1053/j.jrn.2010.07.005.PubMedGoogle Scholar
  116. 116.
    Moraes-Vieira PM, Bassi EJ, Araujo RC, Camara NO. Leptin as a link between the immune system and kidney-related diseases: leading actor or just a coadjuvant? Obes Rev. 2012;13(8):733–43.  https://doi.org/10.1111/j.1467-789X.2012.00997.x.PubMedGoogle Scholar
  117. 117.
    Kara E, Ahbap E, Sahutoglu T, Sakaci T, Basturk T, Koc Y, Sevinc M, Akgol C, Ucar ZA, Kayalar AO, et al. Elevated serum leptin levels are associated with good nutritional status in non-obese chronic hemodialysis patients. Clin Nephrol. 2015;83(3):147–53.  https://doi.org/10.5414/CN108409.PubMedGoogle Scholar
  118. 118.
    Lee CT, Lee CH, Su Y, Chuang YC, Tsai TL, Cheni JB. The relationship between inflammatory markers, leptin and adiponectin in chronic hemodialysis patients. Int J Artif Organs. 2004;27(10):835–41.PubMedGoogle Scholar
  119. 119.
    Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.  https://doi.org/10.1210/er.2005-0005.PubMedGoogle Scholar
  120. 120.
    Ebinc H, Ozkurt ZN, Ebinc FA, Yilmaz M, Caglayan O. Adiponectin and insulin resistance in obesity-related diseases. J Int Med Res. 2008;36(1):71–9.  https://doi.org/10.1177/147323000803600110.PubMedGoogle Scholar
  121. 121.
    Kuczera P, Adamczak M, Wiecek A. Endocrine abnormalities in patients with chronic kidney disease. Prilozi. 2015;36(2):109–18.  https://doi.org/10.1515/prilozi-2015-0059. PubMedGoogle Scholar
  122. 122.
    Hyun YY, Lee KB, Oh KH, Ahn C, Park SK, Chae DW, Yoo TH, Cho KH, Kim YS, Hwang YH. Serum adiponectin and protein-energy wasting in predialysis chronic kidney disease. Nutrition. 2017;33:254–60.  https://doi.org/10.1016/j.nut.2016.06.014.PubMedGoogle Scholar
  123. 123.
    Kalantar-Zadeh K, Rhee CM, Chou J, Ahmadi SF, Park J, Chen JL, Amin AN. The obesity paradox in kidney disease: how to reconcile it with obesity management. Kidney Int Rep. 2017;2(2):271–81.  https://doi.org/10.1016/j.ekir.2017.01.009.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–70.  https://doi.org/10.1210/er.2009-0007.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Liu YY, Brent GA. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends Endocrinol Metab. 2010;21(3):166–73.  https://doi.org/10.1016/j.tem.2009.11.004.PubMedGoogle Scholar
  126. 126.
    Boelen A, Wiersinga WM, Fliers E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid. 2008;18(2):123–9.  https://doi.org/10.1089/thy.2007.0253.PubMedGoogle Scholar
  127. 127.
    Ribeiro MO, Carvalho SD, Schultz JJ, Chiellini G, Scanlan TS, Bianco AC, Brent GA. Thyroid hormone – sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform – specific. J Clin Invest. 2001;108(1):97–105.  https://doi.org/10.1172/JCI12584.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Fliers E, Klieverik LP, Kalsbeek A. Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol Metab. 2010;21(4):230–6.  https://doi.org/10.1016/j.tem.2009.11.008.PubMedGoogle Scholar
  129. 129.
    Potenza M, Via MA, Yanagisawa RT. Excess thyroid hormone and carbohydrate metabolism. Endocr Prac. 2009;15(3):254–62.  https://doi.org/10.4158/EP.15.3.254.Google Scholar
  130. 130.
    Sanai T, Okamura K, Rikitake S, Fukuda M, Onozawa K, Sanematsu M, Takashima T, Miyazono M, Ikeda Y. The high prevalence of reversible subclinical hypothyroidism with elevated serum thyroglobulin levels in chronic kidney disease patients. Clin Nephrol. 2017;87(5):237–44.  https://doi.org/10.5414/CN109008.PubMedGoogle Scholar
  131. 131.
    Disthabanchong S, Treeruttanawanich A. Oral sodium bicarbonate improves thyroid function in predialysis chronic kidney disease. Am J Nephrol. 2010;32(6):549–56.  https://doi.org/10.1159/000321461.PubMedGoogle Scholar
  132. 132.
    Rhee CM. The interaction between thyroid and kidney disease: an overview of the evidence. Curr Opin Endocrinol Diabetes Obes. 2016;23(5):407–15.  https://doi.org/10.1097/MED.0000000000000275.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anuja Shah
    • 1
  • Joel Kopple
    • 2
  1. 1.Division of Nephrology and HypertensionHarbor-UCLA Medical CenterTorranceUSA
  2. 2.Division of Nephrology, Department of MedicineHarbor-UCLA Medical CenterTorranceUSA

Personalised recommendations