Advertisement

Other Pituitary Disorders and Kidney Disease

  • Wenyu Huang
  • Mark E. MolitchEmail author
Chapter

Abstract

Prolactin (PRL) levels are elevated in chronic kidney disease (CKD) due to reduced clearance and increased secretion. Hyperprolactinemia manifests as galactorrhea and hypogonadism. Treatment of hyperprolactinemia should focus on improving bothersome galactorrhea or hypogonadism by using dopamine agonists and replacement of sex hormone(s). Changes in the hypothalamic-pituitary-adrenal (HPA) axis in CKD are characterized by increases in adrenocorticotropic hormone (ACTH) and sometimes cortisol levels, largely preserved circadian rhythms of ACTH and cortisol, and a normal response of cortisol to ACTH, metyrapone, and insulin-induced hypoglycemia. However, the HPA axis is less inhibited by 1 mg of dexamethasone but retains normal suppression by higher-dose dexamethasone. Diagnosis of adrenal insufficiency in CKD patients, as in normal subjects, is usually made by finding a subnormal cortisol response to ACTH. The mainstay of treatment of adrenal insufficiency is to replace glucocorticoid hormone. Cushing’s disease in CKD is difficult to diagnose and relies on the dexamethasone suppression test and the midnight salivary cortisol test since 24-h urine-free cortisol test is not useful. Treatment of Cushing’s disease involves surgery, complemented by radiation and/or medical therapy if necessary. In CKD, arginine vasopressin (AVP) levels are elevated due to decreased clearance, and there is also impairment of AVP signaling in renal tubules. Diabetes insipidus can be masked in advanced kidney disease until kidney transplantation. Diagnosis of syndrome of inappropriate antidiuretic hormone is similar in mild or moderate kidney disease as in normal subjects but is challenging in those with advanced kidney disease owing to the impairment in urine dilution.

Keywords

Chronic kidney disease Prolactin Hyperprolactinemia Adrenocorticotropic hormone Cortisol Adrenal insufficiency Cushing’s disease Arginine vasopressin Diabetes insipidus Syndrome of inappropriate antidiuretic hormone 

References

  1. 1.
    Kleinberg DL, Noel GL, Frantz AG. Galactorrhea: a study of 235 cases, including 48 with pituitary tumors. N Engl J Med. 1977;296(11):589–600.  https://doi.org/10.1056/NEJM197703172961103.PubMedGoogle Scholar
  2. 2.
    Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000;80(4):1523–631.PubMedGoogle Scholar
  3. 3.
    Martinez de la Escalera G, Weiner RI. Dissociation of dopamine from its receptor as a signal in the pleiotropic hypothalamic regulation of prolactin secretion. Endocr Rev. 1992;13(2):241–55.PubMedGoogle Scholar
  4. 4.
    van den Pol AN. Excitatory neuromodulator reduces dopamine release, enhancing prolactin secretion. Neuron. 2010;65(2):147–9.  https://doi.org/10.1016/j.neuron.2010.01.013.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Morel GR, Caron RW, Console GM, Soaje M, Sosa YE, Rodriguez SS, et al. Estrogen inhibits tuberoinfundibular dopaminergic neurons but does not cause irreversible damage. Brain Res Bull. 2009;80(6):347–52.  https://doi.org/10.1016/j.brainresbull.2009.08.026.PubMedPubMedCentralGoogle Scholar
  6. 6.
    DeMaria JE, Livingstone JD, Freeman ME. Ovarian steroids influence the activity of neuroendocrine dopaminergic neurons. Brain Res. 2000;879(1–2):139–47. doi:S0006-8993(00)02763-3 [pii].PubMedGoogle Scholar
  7. 7.
    Livingstone JD, Lerant A, Freeman ME. Ovarian steroids modulate responsiveness to dopamine and expression of G-proteins in lactotropes. Neuroendocrinology. 1998;68(3):172–9. doi:nen68172 [pii].PubMedGoogle Scholar
  8. 8.
    Molitch ME. Pituitary disorders during pregnancy. Endocrinol Metab Clin N Am. 2006;35(1):99–116., vi.  https://doi.org/10.1016/j.ecl.2005.09.011.Google Scholar
  9. 9.
    Salvador J, Dieguez C, Scanlon MF. The circadian rhythms of thyrotrophin and prolactin secretion. Chronobiol Int. 1988;5(1):85–93.PubMedGoogle Scholar
  10. 10.
    Hou SH, Grossman S, Molitch ME. Hyperprolactinemia in patients with renal insufficiency and chronic renal failure requiring hemodialysis or chronic ambulatory peritoneal dialysis. Am J Kidney Dis. 1985;6(4):245–9. doi:S0272638685000981 [pii].PubMedGoogle Scholar
  11. 11.
    Travaglini P, Moriondo P, Togni E, Venegoni P, Bochicchio D, Conti A, et al. Effect of oral zinc administration on prolactin and thymulin circulating levels in patients with chronic renal failure. J Clin Endocrinol Metab. 1989;68(1):186–90.PubMedGoogle Scholar
  12. 12.
    Sievertsen GD, Lim VS, Nakawatase C, Frohman LA. Metabolic clearance and secretion rates of human prolactin in normal subjects and in patients with chronic renal failure. J Clin Endocrinol Metab. 1980;50(5):846–52.  https://doi.org/10.1210/jcem-50-5-846.PubMedGoogle Scholar
  13. 13.
    Hagen C, Olgaard K, McNeilly AS, Fisher R. Prolactin and the pituitary-gonadal axis in male uraemic patients on regular dialysis. Acta Endocrinol. 1976;82(1):29–38.PubMedGoogle Scholar
  14. 14.
    Ramirez G, O'Neill WM Jr, Bloomer HA, Jubiz W. Abnormalities in the regulation of prolactin in patients with chronic renal failure. J Clin Endocrinol Metab. 1977;45(4):658–61.  https://doi.org/10.1210/jcem-45-4-658.PubMedGoogle Scholar
  15. 15.
    Arnaout MA, Hamzeh YS, Ajlouni KM. Prolactin responses to vasoactive intestinal polypeptide and thyrotropin releasing hormone in chronic renal failure. Acta Endocrinol. 1991;125(6):651–6.PubMedGoogle Scholar
  16. 16.
    Leroith D, Danovitz G, Trestan S, Spitz IM. Dissociation of prolactin response to thyrotropin-releasing hormone and metoclopramide in chronic renal failure. J Clin Endocrinol Metab. 1979;49(6):815–7.  https://doi.org/10.1210/jcem-49-6-815.PubMedGoogle Scholar
  17. 17.
    Olgaard K, Hagen C, McNeilly AS. Pituitary hormones in women with chronic renal failure: the effect of chronic intermittent haemo- and peritoneal dialysis. Acta Endocrinol. 1975;80(2):237–46.PubMedGoogle Scholar
  18. 18.
    Saha MT, Saha HH, Niskanen LK, Salmela KT, Pasternack AI. Time course of serum prolactin and sex hormones following successful renal transplantation. Nephron. 2002;92(3):735–7. doi:nef92735 [pii].PubMedGoogle Scholar
  19. 19.
    Olukoga AO, Kane JW. Macroprolactinaemia: validation and application of the polyethylene glycol precipitation test and clinical characterization of the condition. Clin Endocrinol. 1999;51(1):119–26.Google Scholar
  20. 20.
    Smith TP, Kavanagh L, Healy ML, McKenna TJ. Technology insight: measuring prolactin in clinical samples. Nat Clin Pract Endocrinol Metab. 2007;3(3):279–89.  https://doi.org/10.1038/ncpendmet0447.PubMedGoogle Scholar
  21. 21.
    Mooradian AD, Morley JE, Korchik WP, Ma KW, Hartfel MA, Parsons JA. Comparison between bioactivity and immunoreactivity of serum prolactin in uraemia. Clin Endocrinol. 1985;22(3):241–7.Google Scholar
  22. 22.
    Rodriguez-Puyol D, Martin-Oar JE, Cachofeiro MV, del Pino D, Lopez-Novoa JM, Hernando L. Molecular heterogeneity of circulating prolactin in chronic uremic men and renal transplant recipients. J Clin Endocrinol Metab. 1986;62(2):352–6.  https://doi.org/10.1210/jcem-62-2-352.PubMedGoogle Scholar
  23. 23.
    Yavuz D, Topcu G, Ozener C, Akalin S, Sirikci O. Macroprolactin does not contribute to elevated levels of prolactin in patients on renal replacement therapy. Clin Endocrinol. 2005;63(5):520–4.  https://doi.org/10.1111/j.1365-2265.2005.02375.x.Google Scholar
  24. 24.
    Sari F, Sari R, Ozdem S, Sarikaya M, Cetinkaya R. Serum prolactin and macroprolactin levels in diabetic nephropathy. Clin Nephrol. 2012;78(1):33–9.PubMedGoogle Scholar
  25. 25.
    Huang W, Molitch ME. Evaluation and management of galactorrhea. Am Fam Physician. 2012;85(11):1073–80.PubMedGoogle Scholar
  26. 26.
    Santen RJ, Mansel R. Benign breast disorders. N Engl J Med. 2005;353(3):275–85.  https://doi.org/10.1056/NEJMra035692.PubMedGoogle Scholar
  27. 27.
    Vaidyanathan L, Barnard K, Elnicki DM. Benign breast disease: when to treat, when to reassure, when to refer. Cleve Clin J Med. 2002;69(5):425–32.PubMedGoogle Scholar
  28. 28.
    Dhindsa S, Reddy A, Karam JS, Bilkis S, Chaurasia A, Mehta A, et al. Prevalence of subnormal testosterone concentrations in men with type 2 diabetes and chronic kidney disease. Eur J Endocrinol. 2015;173(3):359–66.  https://doi.org/10.1530/eje-15-0359.PubMedGoogle Scholar
  29. 29.
    Carrero JJ, Kyriazis J, Sonmez A, Tzanakis I, Qureshi AR, Stenvinkel P, et al. Prolactin levels, endothelial dysfunction, and the risk of cardiovascular events and mortality in patients with CKD. Clin J Am Soc Nephrol. 2012;7(2):207–15.  https://doi.org/10.2215/cjn.06840711.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Muir JW, Besser GM, Edwards CR, Rees LH, Cattell WR, Ackrill P, et al. Bromocriptine improves reduced libido and potency in men receiving maintenance hemodialysis. Clin Nephrol. 1983;20(6):308–14.PubMedGoogle Scholar
  31. 31.
    Vircburger MI, Prelevic GM, Peric LA, Knezevic J, Djukanovic L. Testosterone levels after bromocriptine treatment in patients undergoing long-term hemodialysis. J Androl. 1985;6(2):113–6.PubMedGoogle Scholar
  32. 32.
    Peces R, Horcajada C, Lopez-Novoa JM, Frutos MA, Casado S, Hernando L. Hyperprolactinemia in chronic renal failure: impaired responsiveness to stimulation and suppression. Normalization after transplantation. Nephron. 1981;28(1):11–6.PubMedGoogle Scholar
  33. 33.
    Molitch ME. Medication-induced hyperprolactinemia. Mayo Clin Proc. 2005;80(8):1050–7.PubMedGoogle Scholar
  34. 34.
    Molitch ME. Drugs and prolactin. Pituitary. 2008;11(2):209–18.  https://doi.org/10.1007/s11102-008-0106-6.PubMedGoogle Scholar
  35. 35.
    Pena KS, Rosenfeld JA. Evaluation and treatment of galactorrhea. Am Fam Physician. 2001;63(9):1763–70.PubMedGoogle Scholar
  36. 36.
    Leung AK, Pacaud D. Diagnosis and management of galactorrhea. Am Fam Physician. 2004;70(3):543–50.PubMedGoogle Scholar
  37. 37.
    Oguz Y, Oktenli C, Ozata M, Ozgurtas T, Sanisoglu Y, Yenicesu M, et al. The midnight-to-morning urinary cortisol increment method is not reliable for the assessment of hypothalamic-pituitary-adrenal insufficiency in patients with end-stage kidney disease. J Endocrinol Investig. 2003;26(7):609–15.  https://doi.org/10.1007/bf03347016.Google Scholar
  38. 38.
    Clodi M, Riedl M, Schmaldienst S, Vychytil A, Kotzmann H, Kaider A, et al. Adrenal function in patients with chronic renal failure. Am J Kidney Dis. 1998;32(1):52–5.  https://doi.org/10.1053/ajkd.1998.v32.pm9669424.PubMedGoogle Scholar
  39. 39.
    McDonald WJ, Golper TA, Mass RD, Kendall JW, Porter GA, Girard DE, et al. Adrenocorticotropin-cortisol axis abnormalities in hemodialysis patients. J Clin Endocrinol Metab. 1979;48(1):92–5.  https://doi.org/10.1210/jcem-48-1-92.PubMedGoogle Scholar
  40. 40.
    Ramirez G, Gomez-Sanchez C, Meikle WA, Jubiz W. Evaluation of the hypothalamic hypophyseal adrenal axis in patients receiving long-term hemodialysis. Arch Intern Med. 1982;142(8):1448–52.PubMedGoogle Scholar
  41. 41.
    Wallace EZ, Rosman P, Toshav N, Sacerdote A, Balthazar A. Pituitary-adrenocortical function in chronic renal failure: studies of episodic secretion of cortisol and dexamethasone suppressibility. J Clin Endocrinol Metab. 1980;50(1):46–51.  https://doi.org/10.1210/jcem-50-1-46.PubMedGoogle Scholar
  42. 42.
    Kleeman CR, Levi J, Better O. Kidney and adrenocortical hormones. Nephron. 1975;15(3–5):261–78.PubMedGoogle Scholar
  43. 43.
    Raff H, Trivedi H. Circadian rhythm of salivary cortisol, plasma cortisol, and plasma ACTH in end-stage renal disease. Endocr Connect. 2013;2(1):23–31.  https://doi.org/10.1530/ec-12-0058.PubMedGoogle Scholar
  44. 44.
    Deshmukh S, Phillips BG, O'Dorisio T, Flanigan MJ, Lim VS. Hormonal responses to fasting and refeeding in chronic renal failure patients. Am J Physiol Endocrinol Metab. 2005;288(1):E47–55.  https://doi.org/10.1152/ajpendo.00163.2004.PubMedGoogle Scholar
  45. 45.
    Russcher M, Chaves I, Lech K, Koch BC, Nagtegaal JE, Dorsman KF, et al. An observational study on disturbed peripheral circadian rhythms in hemodialysis patients. Chronobiol Int. 2015;32(6):848–57.  https://doi.org/10.3109/07420528.2015.1048868.PubMedGoogle Scholar
  46. 46.
    Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol. 1994;105(2):R11–7.PubMedGoogle Scholar
  47. 47.
    Mongia A, Vecker R, George M, Pandey A, Tawadrous H, Schoeneman M, et al. Role of 11betaHSD type 2 enzyme activity in essential hypertension and children with chronic kidney disease (CKD). J Clin Endocrinol Metab. 2012;97(10):3622–9.  https://doi.org/10.1210/jc.2012-1411.PubMedGoogle Scholar
  48. 48.
    N'Gankam V, Uehlinger D, Dick B, Frey BM, Frey FJ. Increased cortisol metabolites and reduced activity of 11beta-hydroxysteroid dehydrogenase in patients on hemodialysis. Kidney Int. 2002;61(5):1859–66.  https://doi.org/10.1046/j.1523-1755.2002.00308.x.PubMedGoogle Scholar
  49. 49.
    Homma M, Tanaka A, Hino K, Takamura H, Hirano T, Oka K, et al. Assessing systemic 11beta-hydroxysteroid dehydrogenase with serum cortisone/cortisol ratios in healthy subjects and patients with diabetes mellitus and chronic renal failure. Metab Clin Exp. 2001;50(7):801–4.  https://doi.org/10.1053/meta.2001.24213.PubMedGoogle Scholar
  50. 50.
    Kawai S, Ichikawa Y, Homma M. Differences in metabolic properties among cortisol, prednisolone, and dexamethasone in liver and renal diseases: accelerated metabolism of dexamethasone in renal failure. J Clin Endocrinol Metab. 1985;60(5):848–54.  https://doi.org/10.1210/jcem-60-5-848.PubMedGoogle Scholar
  51. 51.
    Soule S, Van Zyl SC, Parolis G, Attenborough S, Peter D, Kinvig S, et al. The low dose ACTH stimulation test is less sensitive than the overnight metyrapone test for the diagnosis of secondary hypoadrenalism. Clin Endocrinol. 2000;53(2):221–7.Google Scholar
  52. 52.
    Charmandari E, Nicolaides NC, Chrousos GP. Adrenal insufficiency. Lancet. 2014;383(9935):2152–67.  https://doi.org/10.1016/s0140-6736(13)61684-0.PubMedGoogle Scholar
  53. 53.
    Rodger RS, Dewar JH, Turner SJ, Watson MJ, Ward MK. Anterior pituitary dysfunction in patients with chronic renal failure treated by hemodialysis or continuous ambulatory peritoneal dialysis. Nephron. 1986;43(3):169–72.PubMedGoogle Scholar
  54. 54.
    Schmidt IL, Lahner H, Mann K, Petersenn S. Diagnosis of adrenal insufficiency: evaluation of the corticotropin-releasing hormone test and basal serum cortisol in comparison to the insulin tolerance test in patients with hypothalamic-pituitary-adrenal disease. J Clin Endocrinol Metab. 2003;88(9):4193–8.  https://doi.org/10.1210/jc.2002-021897.PubMedGoogle Scholar
  55. 55.
    Ramirez G, Bittle PA, Sanders H, Rabb HA, Bercu BB. The effects of corticotropin and growth hormone releasing hormones on their respective secretory axes in chronic hemodialysis patients before and after correction of anemia with recombinant human erythropoietin. J Clin Endocrinol Metab. 1994;78(1):63–9.  https://doi.org/10.1210/jcem.78.1.8288716.PubMedGoogle Scholar
  56. 56.
    Siamopoulos KC, Dardamanis M, Kyriaki D, Pappas M, Sferopoulos G, Alevisou V. Pituitary adrenal responsiveness to corticotropin-releasing hormone in chronic uremic patients. Perit Dial Int. 1990;10(2):153–6.PubMedGoogle Scholar
  57. 57.
    Crowley RK, Argese N, Tomlinson JW, Stewart PM. Central hypoadrenalism. J Clin Endocrinol Metab. 2014;99(11):4027–36.  https://doi.org/10.1210/jc.2014-2476.PubMedGoogle Scholar
  58. 58.
    Sakao Y, Sugiura T, Tsuji T, Ohashi N, Yasuda H, Fujigaki Y, et al. Clinical manifestation of hypercalcemia caused by adrenal insufficiency in hemodialysis patients: a case-series study. Intern Med. 2014;53(14):1485–90.PubMedGoogle Scholar
  59. 59.
    Kato A, Shinozaki S, Goga T, Hishida A. Isolated adrenocorticotropic hormone deficiency presenting with hypercalcemia in a patient on long-term hemodialysis. Am J Kidney Dis. 2003;42(2):E32–6.PubMedGoogle Scholar
  60. 60.
    Bancos I, Hahner S, Tomlinson J, Arlt W. Diagnosis and management of adrenal insufficiency. Lancet Diabetes Endocrinol. 2015;3(3):216–26.  https://doi.org/10.1016/s2213-8587(14)70142-1.PubMedGoogle Scholar
  61. 61.
    Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.  https://doi.org/10.1210/jc.2008-0125.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Gracia-Iguacel C, Gonzalez-Parra E, Egido J, Lindholm B, Mahillo I, Carrero JJ, et al. Cortisol levels are associated with mortality risk in hemodialysis patients. Clin Nephrol. 2014;82(4):247–56.PubMedGoogle Scholar
  63. 63.
    Workman RJ, Vaughn WK, Stone WJ. Dexamethasone suppression testing in chronic renal failure: pharmacokinetics of dexamethasone and demonstration of a normal hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab. 1986;63(3):741–6.  https://doi.org/10.1210/jcem-63-3-741.PubMedGoogle Scholar
  64. 64.
    Olsen H, Mjoman M. Moderately impaired renal function increases morning cortisol and cortisol levels at dexamethasone suppression test in patients with incidentally detected adrenal adenomas. Clin Endocrinol. 2015;83:762.  https://doi.org/10.1111/cen.12823.Google Scholar
  65. 65.
    Rosman PM, Farag A, Peckham R, Benn R, Tito J, Bacci V, et al. Pituitary-adrenocortical function in chronic renal failure: blunted suppression and early escape of plasma cortisol levels after intravenous dexamethasone. J Clin Endocrinol Metab. 1982;54(3):528–33.  https://doi.org/10.1210/jcem-54-3-528.PubMedGoogle Scholar
  66. 66.
    Lindsay JR, Nieman LK. Differential diagnosis and imaging in Cushing’s syndrome. Endocrinol Metab Clin N Am. 2005;34(2):403–21., x.  https://doi.org/10.1016/j.ecl.2005.01.009.Google Scholar
  67. 67.
    Chan KC, Lit LC, Law EL, Tai MH, Yung CU, Chan MH, et al. Diminished urinary free cortisol excretion in patients with moderate and severe renal impairment. Clin Chem. 2004;50(4):757–9.  https://doi.org/10.1373/clinchem.2003.029934.PubMedGoogle Scholar
  68. 68.
    Issa BG, Page MD, Read G, John R, Douglas-Jones A, Scanlon MF. Undetectable urinary free cortisol concentrations in a case of Cushing’s disease. Eur J Endocrinol. 1999;140(2):148–51.PubMedGoogle Scholar
  69. 69.
    Stewart PM. The adrenal cortex. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, editors. Williams textbook of endocrinology. 11th ed. Philadelphia: Saunders Elsevier; 2008.Google Scholar
  70. 70.
    Molitch ME. Current approaches to the pharmacological management of Cushing’s disease. Mol Cell Endocrinol. 2015;408:185–9.  https://doi.org/10.1016/j.mce.2014.09.021.PubMedGoogle Scholar
  71. 71.
    Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of Cushing;s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2015;100(8):2807–31.  https://doi.org/10.1210/jc.2015-1818.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Juul KV, Bichet DG, Nielsen S, Norgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol Renal Physiol. 2014;306(9):F931–40.  https://doi.org/10.1152/ajprenal.00604.2013.PubMedGoogle Scholar
  73. 73.
    Iitake K, Kimura T, Matsui K, Ota K, Shoji M, Inoue M, et al. Effect of haemodialysis on plasma ADH levels, plasma renin activity and plasma aldosterone levels in patients with end-stage renal disease. Acta Endocrinol. 1985;110(2):207–13.PubMedGoogle Scholar
  74. 74.
    Argent NB, Wilkinson R, Baylis PH. Metabolic clearance rate of arginine vasopressin in severe chronic renal failure. Clin Sci. 1992;83(5):583–7.PubMedGoogle Scholar
  75. 75.
    Shimamoto K, Watarai I, Miyahara M. A study of plasma vasopressin in patients undergoing chronic hemodialysis. J Clin Endocrinol Metab. 1977;45(4):714–20.  https://doi.org/10.1210/jcem-45-4-714.PubMedGoogle Scholar
  76. 76.
    Ettema EM, Zittema D, Kuipers J, Gansevoort RT, Vart P, de Jong PE, et al. Dialysis hypotension: a role for inadequate increase in arginine vasopressin levels? A systematic literature review and meta-analysis. Am J Nephrol. 2014;39(2):100–9.  https://doi.org/10.1159/000358203.PubMedGoogle Scholar
  77. 77.
    Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, et al. Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J Clin Endocrinol Metab. 2014;99(12):4656–63.  https://doi.org/10.1210/jc.2014-2295.PubMedGoogle Scholar
  78. 78.
    Mueller T, Gegenhuber A, Kronabethleitner G, Leitner I, Haltmayer M, Dieplinger B. Plasma concentrations of novel cardiac biomarkers before and after hemodialysis session. Clin Biochem. 2015;48(16–17):1163–6.  https://doi.org/10.1016/j.clinbiochem.2015.07.031.PubMedGoogle Scholar
  79. 79.
    Pedersen EB, Thomsen IM, Lauridsen TG. Abnormal function of the vasopressin-cyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study. BMC Nephrol. 2010;11:26.  https://doi.org/10.1186/1471-2369-11-26.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Teitelbaum I, McGuinness S. Vasopressin resistance in chronic renal failure. Evidence for the role of decreased V2 receptor mRNA. J Clin Invest. 1995;96(1):378–85.  https://doi.org/10.1172/jci118044.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Rosansky SJ, Rhinehart R, Shade R. Effect of osmolar changes on plasma arginine vasopressin (PAVP) in dialysis patients. Clin Nephrol. 1991;35(4):158–64.PubMedGoogle Scholar
  82. 82.
    Thompson AM, Oliver JA. Endogenous and exogenous vasopressin during hemodialysis. Semin Dial. 2009;22(5):472–5.  https://doi.org/10.1111/j.1525-139X.2009.00615.x.PubMedGoogle Scholar
  83. 83.
    Hegbrant J, Thysell H, Martensson L, Ekman R, Boberg U. Changes in plasma levels of vasoactive peptides during standard bicarbonate hemodialysis. Nephron. 1993;63(3):303–8.PubMedGoogle Scholar
  84. 84.
    Rho M, Perazella MA, Parikh CR, Peixoto AJ, Brewster UC. Serum vasopressin response in patients with intradialytic hypotension: a pilot study. Clin J Am Soc Nephrol. 2008;3(3):729–35.  https://doi.org/10.2215/cjn.05341107.PubMedPubMedCentralGoogle Scholar
  85. 85.
    van der Zee S, Thompson A, Zimmerman R, Lin J, Huan Y, Braskett M, et al. Vasopressin administration facilitates fluid removal during hemodialysis. Kidney Int. 2007;71(4):318–24.  https://doi.org/10.1038/sj.ki.5001885.PubMedGoogle Scholar
  86. 86.
    Tannen RL, Regal EM, Dunn MJ, Schrier RW. Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N Engl J Med. 1969;280(21):1135–41.  https://doi.org/10.1056/nejm196905222802101.PubMedGoogle Scholar
  87. 87.
    Kim KM, Kim SM, Lee J, Lee SY, Kwon SK, Kim HY. Newly developed central diabetes insipidus following kidney transplantation: a case report. Transplant Proc. 2013;45(7):2804–6.  https://doi.org/10.1016/j.transproceed.2013.02.141.PubMedGoogle Scholar
  88. 88.
    Kim DD, Holdaway IM. Unmasking of undiagnosed pre-existing central diabetes insipidus after renal transplantation. Pituitary. 2012;15(1):106–9.  https://doi.org/10.1007/s11102-010-0259-y.PubMedGoogle Scholar
  89. 89.
    Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med. 2007;356(20):2064–72.  https://doi.org/10.1056/NEJMcp066837.PubMedGoogle Scholar
  90. 90.
    Kovesdy CP. Significance of hypo- and hypernatremia in chronic kidney disease. Nephrol Dial Transplant. 2012;27(3):891–8.  https://doi.org/10.1093/ndt/gfs038.PubMedGoogle Scholar
  91. 91.
    Bankir L, Bouby N, Ritz E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat Rev Nephrol. 2013;9(4):223–39.  https://doi.org/10.1038/nrneph.2013.22.PubMedGoogle Scholar
  92. 92.
    Ho TA, Godefroid N, Gruzon D, Haymann JP, Marechal C, Wang X, et al. Autosomal dominant polycystic kidney disease is associated with central and nephrogenic defects in osmoregulation. Kidney Int. 2012;82(10):1121–9.  https://doi.org/10.1038/ki.2012.225.PubMedGoogle Scholar
  93. 93.
    Boertien WE, Meijer E, Li J, Bost JE, Struck J, Flessner MF, et al. Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am J Kidney Dis. 2013;61(3):420–9.  https://doi.org/10.1053/j.ajkd.2012.08.038.PubMedGoogle Scholar
  94. 94.
    Nakajima A, Lu Y, Kawano H, Horie S, Muto S. Association of arginine vasopressin surrogate marker urinary copeptin with severity of autosomal dominant polycystic kidney disease (ADPKD). Clin Exp Nephrol. 2015;19:1199.  https://doi.org/10.1007/s10157-015-1101-7.PubMedGoogle Scholar
  95. 95.
    Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol. 2015;11(8):451–64.  https://doi.org/10.1038/nrneph.2015.39.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Bolignano D, Cabassi A, Fiaccadori E, Ghigo E, Pasquali R, Peracino A, et al. Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med. 2014;52(10):1447–56.  https://doi.org/10.1515/cclm-2014-0379.PubMedGoogle Scholar
  97. 97.
    Baur BP, Meaney CJ. Review of tolvaptan for autosomal dominant polycystic kidney disease. Pharmacotherapy. 2014;34(6):605–16.  https://doi.org/10.1002/phar.1421.PubMedGoogle Scholar
  98. 98.
    Torres VE. Vasopressin antagonists in polycystic kidney disease. Kidney Int. 2005;68(5):2405–18.  https://doi.org/10.1111/j.1523-1755.2005.00703.x.PubMedGoogle Scholar
  99. 99.
    Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.  https://doi.org/10.1056/NEJMoa1205511.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of EndocrinologyMetabolism and Molecular Medicine, Northwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations