Management of Bone Disorders in Kidney Disease

  • Stuart M. SpragueEmail author


In healthy individuals, normal serum concentrations of phosphorus and calcium are maintained through the interaction of three hormones: parathyroid hormone (PTH), calcitriol (1,25(OH)2D3), and fibroblast growth factor 23 (FGF-23). These hormones act on four primary target organs: bone, kidney, intestine, and parathyroid glands. The kidneys play a critical role in the regulation of serum calcium and phosphorus concentrations as well as these three hormones. In patients with chronic kidney disease (CKD), increased PTH concentrations are generally the first clinically measured abnormality observed in patients with evolving CKD; however, FGF-23 increases prior to PTH [1, 2]. Shortly following the increases in FGF-23 and PTH, calcitriol concentrations will fall [1]. Changes in these hormones in the early stages of the CKD are an adaptive mechanism to help maintain the serum phosphorus and calcium concentrations in the normal range. It is not until the development of CKD stages 4–5 (glomerular filtration rate less than 30 mL/min/1.73m2) that measurable abnormalities of calcium and phosphorus become apparent [1].


Chronic kidney disease Renal osteodystrophy Osteoporosis Hyperparathyroidism Hyperphosphatemia Vitamin D receptor activators Calcimimetics 


  1. 1.
    Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8.PubMedGoogle Scholar
  2. 2.
    Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53.PubMedGoogle Scholar
  4. 4.
    Group KDIGOKC-MW. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.Google Scholar
  5. 5.
    Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92(1):26–36.PubMedGoogle Scholar
  6. 6.
    Bergwitz C, Jüppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91–104.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Blau JE, Collins MT. The PTH-vitamin D-FGF23 axis. Rev Endocr Metab Disord. 2015;16(2):165–74.PubMedGoogle Scholar
  8. 8.
    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117(12):4003–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299(4):F882–9.PubMedGoogle Scholar
  10. 10.
    Rodriguez-Ortiz ME, Lopez I, Muñoz-Castañeda JR, Martinez-Moreno JM, Ramírez AP, Pineda C, et al. Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol. 2012;23(7):1190–7.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by Dialysis. Am J Kidney Dis. 2016;67(4):559–66.PubMedGoogle Scholar
  12. 12.
    Ennis JL, Worcester EM, Coe FL, Sprague SM. Current recommended 25-hydroxyvitamin D targets for chronic kidney disease management may be too low. J Nephrol. 2016;29(1):63–70.PubMedGoogle Scholar
  13. 13.
    Malluche HH, Mawad HW, Monier-Faugere MC. Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res. 2011;26(6):1368–76.PubMedGoogle Scholar
  14. 14.
    Hui SL, Slemenda CW, Johnston CC. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81(6):1804–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Sprague SM. Is bone mineral density measurement of any value in a dialysis patient? Semin Dial. 2011;24(4):433–4.PubMedGoogle Scholar
  16. 16.
    Alexander AJ, Jahangir D, Lazarus M, Sprague SM. Imaging in chronic kidney disease-metabolic bone disease. Semin Dial. 2017;30(4):361–8.PubMedGoogle Scholar
  17. 17.
    Jamal SA, Hayden JA, Beyene J. Low bone mineral density and fractures in long-term hemodialysis patients: a meta-analysis. Am J Kidney Dis. 2007;49(5):674–81.PubMedGoogle Scholar
  18. 18.
    Iimori S, Mori Y, Akita W, Kuyama T, Takada S, Asai T, et al. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients – a single-center cohort study. Nephrol Dial Transplant. 2012;27(1):345–51.PubMedGoogle Scholar
  19. 19.
    West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, et al. Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res. 2015;30(5):913–9.PubMedGoogle Scholar
  20. 20.
    Sturgeon CM, Sprague SM, Metcalfe W. Variation in parathyroid hormone immunoassay results – a critical governance issue in the management of chronic kidney disease. Nephrol Dial Transplant. 2011;26(11):3440–5.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Cozzolino M, Tomlinson J, Walsh L, Bellasi A. Emerging drugs for secondary hyperparathyroidism. Expert Opin Emerg Drugs. 2015;20(2):197–208.PubMedGoogle Scholar
  22. 22.
    Sekercioglu N, Angeliki Veroniki A, Thabane L, Busse JW, Akhtar-Danesh N, Iorio A, et al. Effects of different phosphate lowering strategies in patients with CKD on laboratory outcomes: a systematic review and NMA. PLoS One. 2017;12(3):e0171028.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Sekercioglu N, Thabane L, Diaz Martinez JP, Nesrallah G, Longo CJ, Busse JW, et al. Comparative effectiveness of phosphate binders in patients with chronic kidney disease: a systematic review and network meta-analysis. PLoS One. 2016;11(6):e0156891.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Daugirdas JT, Finn WF, Emmett M, Chertow GM. Frequent hemodialysis network trial G. The phosphate binder equivalent dose. Semin Dial. 2011;24(1):41–9.PubMedGoogle Scholar
  25. 25.
    Floege J, Covic AC, Ketteler M, Rastogi A, Chong EM, Gaillard S, et al. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients. Kidney Int. 2014;86(3):638–47.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Van Buren PN, Lewis JB, Dwyer JP, Greene T, Middleton J, Sika M, et al. The phosphate binder ferric citrate and mineral metabolism and inflammatory markers in maintenance dialysis patients: results from prespecified analyses of a randomized clinical trial. Am J Kidney Dis. 2015;66(3):479–88.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Yilmaz MI, Sonmez A, Saglam M, Yaman H, Kilic S, Eyileten T, et al. Comparison of calcium acetate and sevelamer on vascular function and fibroblast growth factor 23 in CKD patients: a randomized clinical trial. Am J Kidney Dis. 2012;59(2):177–85.PubMedGoogle Scholar
  28. 28.
    Cozzolino M, Mazzaferro S, Brandenburg V. The treatment of hyperphosphataemia in CKD: calcium-based or calcium-free phosphate binders? Nephrol Dial Transplant. 2011;26(2):402–7.PubMedGoogle Scholar
  29. 29.
    Palmer SC, Gardner S, Tonelli M, Mavridis D, Johnson DW, Craig JC, et al. Phosphate-binding agents in adults with CKD: a network meta-analysis of randomized trials. Am J Kidney Dis. 2016;68(5):691–702.PubMedGoogle Scholar
  30. 30.
    Zisman AL, Hristova M, Ho LT, Sprague SM. Impact of ergocalciferol treatment of vitamin D deficiency on serum parathyroid hormone concentrations in chronic kidney disease. Am J Nephrol. 2007;27(1):36–43.PubMedGoogle Scholar
  31. 31.
    Chandra P, Binongo JN, Ziegler TR, Schlanger LE, Wang W, Someren JT, et al. Cholecalciferol (vitamin D3) therapy and vitamin D insufficiency in patients with chronic kidney disease: a randomized controlled pilot study. Endocr Pract. 2008;14(1):10–7.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sprague SM, Crawford PW, Melnick JZ, Strugnell SA, Ali S, Mangoo-Karim R, et al. Use of extended-release calcifediol to treat secondary hyperparathyroidism in stages 3 and 4 chronic kidney disease. Am J Nephrol. 2016;44(4):316–25.PubMedGoogle Scholar
  33. 33.
    Bhan I, Dobens D, Tamez H, Deferio JJ, Li YC, Warren HS, et al. Nutritional vitamin D supplementation in dialysis: a randomized trial. Clin J Am Soc Nephrol. 2015;10(4):611–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Massart A, Debelle FD, Racape J, Gervy C, Husson C, Dhaene M, et al. Biochemical parameters after cholecalciferol repletion in hemodialysis: results from the VitaDial randomized trial. Am J Kidney Dis. 2014;64(5):696–705.PubMedGoogle Scholar
  35. 35.
    Coburn JW, Maung HM, Elangovan L, Germain MJ, Lindberg JS, Sprague SM, et al. Doxercalciferol safely suppresses PTH levels in patients with secondary hyperparathyroidism associated with chronic kidney disease stages 3 and 4. Am J Kidney Dis. 2004;43(5):877–90.PubMedGoogle Scholar
  36. 36.
    Coyne D, Acharya M, Qiu P, Abboud H, Batlle D, Rosansky S, et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis. 2006;47(2):263–76.PubMedGoogle Scholar
  37. 37.
    Nordal KP, Dahl E. Low dose calcitriol versus placebo in patients with predialysis chronic renal failure. J Clin Endocrinol Metab. 1988;67(5):929–36.PubMedGoogle Scholar
  38. 38.
    Rix M, Eskildsen P, Olgaard K. Effect of 18 months of treatment with alfacalcidol on bone in patients with mild to moderate chronic renal failure. Nephrol Dial Transplant. 2004;19(4):870–6.PubMedGoogle Scholar
  39. 39.
    Coyne DW, Goldberg S, Faber M, Ghossein C, Sprague SM. A randomized multicenter trial of paricalcitol versus calcitriol for secondary hyperparathyroidism in stages 3-4 CKD. Clin J Am Soc Nephrol. 2014;9(9):1620–6.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Palmer SC, McGregor DO, Macaskill P, Craig JC, Elder GJ, Strippoli GF. Meta-analysis: vitamin D compounds in chronic kidney disease. Ann Intern Med. 2007;147(12):840–53.PubMedGoogle Scholar
  41. 41.
    Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350(15):1516–25.PubMedGoogle Scholar
  42. 42.
    Goodman WG, Hladik GA, Turner SA, Blaisdell PW, Goodkin DA, Liu W, et al. The calcimimetic agent AMG 073 lowers plasma parathyroid hormone levels in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol. 2002;13(4):1017–24.PubMedGoogle Scholar
  43. 43.
    Block GA, Bushinsky DA, Cheng S, Cunningham J, Dehmel B, Drueke TB, et al. Effect of etelcalcetide vs cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA. 2017;317(2):156–64.PubMedGoogle Scholar
  44. 44.
    Block GA, Bushinsky DA, Cunningham J, Drueke TB, Ketteler M, Kewalramani R, et al. Effect of etelcalcetide vs placebo on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: two randomized clinical trials. JAMA. 2017;317(2):146–55.PubMedGoogle Scholar
  45. 45.
    Lindberg JS, Moe SM, Goodman WG, Coburn JW, Sprague SM, Liu W, et al. The calcimimetic AMG 073 reduces parathyroid hormone and calcium x phosphorus in secondary hyperparathyroidism. Kidney Int. 2003;63(1):248–54.PubMedGoogle Scholar
  46. 46.
    Wetmore JB, Gurevich K, Sprague S, Da Roza G, Buerkert J, Reiner M, et al. A randomized trial of cinacalcet versus vitamin D analogs as monotherapy in secondary hyperparathyroidism (PARADIGM). Clin J Am Soc Nephrol. 2015;10(6):1031–40.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Sprague SM, Wetmore JB, Gurevich K, Da Roza G, Buerkert J, Reiner M, et al. Effect of cinacalcet and vitamin D analogs on fibroblast growth factor-23 during the treatment of secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2015;10(6):1021–30.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Investigators ET, Chertow GM, Block GA, Correa-Rotter R, Drueke TB, Floege J, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367(26):2482–94.Google Scholar
  49. 49.
    Chonchol M, Locatelli F, Abboud HE, Charytan C, de Francisco AL, Jolly S, et al. A randomized, double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet HCl in participants with CKD not receiving dialysis. Am J Kidney Dis. 2009;53(2):197–207.PubMedGoogle Scholar
  50. 50.
    Charytan C, Coburn JW, Chonchol M, Herman J, Lien YH, Liu W, et al. Cinacalcet hydrochloride is an effective treatment for secondary hyperparathyroidism in patients with CKD not receiving dialysis. Am J Kidney Dis. 2005;46(1):58–67.PubMedGoogle Scholar
  51. 51.
    Narayan R, Perkins RM, Berbano EP, Yuan CM, Neff RT, Sawyers ES, et al. Parathyroidectomy versus cinacalcet hydrochloride-based medical therapy in the management of hyperparathyroidism in ESRD: a cost utility analysis. Am J Kidney Dis. 2007;49(6):801–13.PubMedGoogle Scholar
  52. 52.
    Ishani A, Liu J, Wetmore JB, Lowe KA, Do T, Bradbury BD, et al. Clinical outcomes after parathyroidectomy in a nationwide cohort of patients on hemodialysis. Clin J Am Soc Nephrol. 2015;10(1):90–7.PubMedGoogle Scholar
  53. 53.
    Conzo G, Perna AF, Savica V, Palazzo A, Della Pietra C, Ingrosso D, et al. Impact of parathyroidectomy on cardiovascular outcomes and survival in chronic hemodialysis patients with secondary hyperparathyroidism. A retrospective study of 50 cases prior to the calcimimetics era. BMC Surg. 2013;13(Suppl 2):S4.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Zangeneh F, Clarke BL, Hurley DL, Watts NB, Miller PD. Chronic Kidney Disease-Mineral and Bone Disorders (CKD-MBDs): what the endocrinologist needs to know. Endocr Pract. 2014;20(5):500–16.PubMedGoogle Scholar
  55. 55.
    Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.PubMedGoogle Scholar
  56. 56.
    Rogers MJ, Crockett JC, Coxon FP, Monkkonen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34–41.PubMedGoogle Scholar
  57. 57.
    Mitsopoulos E, Ginikopoulou E, Economidou D, Zanos S, Pateinakis P, Minasidis E, et al. Impact of long-term cinacalcet, ibandronate or teriparatide therapy on bone mineral density of hemodialysis patients: a pilot study. Am J Nephrol. 2012;36(3):238–44.PubMedGoogle Scholar
  58. 58.
    Miller PD. Denosumab: anti-RANKL antibody. Curr Osteoporos Rep. 2009;7(1):18–22.PubMedGoogle Scholar
  59. 59.
    Jamal SA, Ljunggren O, Stehman-Breen C, Cummings SR, McClung MR, Goemaere S, et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res. 2011;26(8):1829–35.PubMedGoogle Scholar
  60. 60.
    Block GA, Bone HG, Fang L, Lee E, Padhi D. A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res. 2012;27(7):1471–9.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ivanov P, Khedr M. Prolonged hypocalcaemia following a single dose of 60 mg denosumab in two patients with CKD 4/5 on cinacalcet treatment for tertiary hyperparathyroidism. Clin Kidney J. 2013;6(2):245.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Miller PD, Bilezikian JP, Deal C, Harris ST, Ci RP. Clinical use of teriparatide in the real world: initial insights. Endocr Pract. 2004;10(2):139–48.PubMedGoogle Scholar
  63. 63.
    Leder BZ, O'Dea LS, Zanchetta JR, Kumar P, Banks K, McKay K, et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2015;100(2):697–706.PubMedGoogle Scholar
  64. 64.
    Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–33.PubMedGoogle Scholar
  65. 65.
    Cosman F, Hattersley G, Hu MY, Williams GC, Fitzpatrick LA, Black DM. Effects of abaloparatide-SC on fractures and bone mineral density in subgroups of postmenopausal women with osteoporosis and varying baseline risk factors. J Bone Miner Res. 2017;32(1):17–23.PubMedGoogle Scholar
  66. 66.
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.PubMedGoogle Scholar
  67. 67.
    Kaufman JM, Orwoll E, Goemaere S, San Martin J, Hossain A, Dalsky GP, et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int. 2005;16(5):510–6.PubMedGoogle Scholar
  68. 68.
    Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357(20):2028–39.PubMedGoogle Scholar
  69. 69.
    Gluer CC, Marin F, Ringe JD, Hawkins F, Moricke R, Papaioannu N, et al. Comparative effects of teriparatide and risedronate in glucocorticoid-induced osteoporosis in men: 18-month results of the EuroGIOPs trial. J Bone Miner Res. 2013;28(6):1355–68.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Nishikawa A, Yoshiki F, Taketsuna M, Kajimoto K, Enomoto H. Safety and effectiveness of daily teriparatide for osteoporosis in patients with severe stages of chronic kidney disease: post hoc analysis of a postmarketing observational study. Clin Interv Aging. 2016;11:1653–9.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int. 2007;18(1):59–68.PubMedGoogle Scholar
  72. 72.
    Cejka D, Kodras K, Bader T, Haas M. Treatment of hemodialysis-associated adynamic bone disease with Teriparatide (PTH1-34): a pilot study. Kidney Blood Press Res. 2010;33(3):221–6.PubMedGoogle Scholar
  73. 73.
    Palcu P, Dion N, Ste-Marie LG, Goltzman D, Radziunas I, Miller PD, et al. Teriparatide and bone turnover and formation in a hemodialysis patient with low-turnover bone disease: a case report. Am J Kidney Dis. 2015;65(6):933–6.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Nephrology and HypertensionNorthShore University HealthSystemEvanstonUSA
  2. 2.University of Chicago Pritzker School of MedicineChicagoUSA

Personalised recommendations