Advertisement

Drugs for Treatment of Dyslipidemia Available in the USA

  • Elani StrejaEmail author
  • Dan A. Streja
Chapter

Abstract

This chapter will focus on the pharmacologic interventions for treatment of dyslipidemia in patients with chronic kidney disease (CKD). Herein, we will discuss drugs of interest for lipid management and their current and potential future use in CKD patients.

Keywords

Dyslipidemia Chronic kidney disease Statins Fibrates Niacin Bile acid-binding resins Ezetimibe PCSK9 inhibitors N-3 fatty acids Probucol 

References

  1. 1.
    LRC-CPPT. The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. JAMA. 1984;251:351–64.CrossRefGoogle Scholar
  2. 2.
    Tonelli M, Wanner C, Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group, M. Lipid management in chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2013 clinical practice guideline. Ann Intern Med. 2014;160:182.PubMedCrossRefGoogle Scholar
  3. 3.
    Sarnak MJ, Bloom R, Muntner P, Rahman M, Saland JM, Wilson PW, Fried L. KDOQI US commentary on the 2013 KDIGO clinical practice guideline for lipid management in CKD. Am J Kidney Dis. 2015;65:354–66.PubMedCrossRefGoogle Scholar
  4. 4.
    NICE 2014. Cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. http://www.nice.org.uk/guidance/CG181.
  5. 5.
    Anderson TJ, Gregoire J, Hegele RA, Couture P, Mancini GB, Mcpherson R, Francis GA, Poirier P, Lau DC, Grover S, Genest J, Carpentier AC, Dufour R, Gupta M, Ward R, Leiter LA, Lonn E, Ng DS, Pearson GJ, Yates GM, Stone JA, Ur E. 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2013;29:151–67.PubMedCrossRefGoogle Scholar
  6. 6.
    European Association for Cardiovascular, P., Rehabilitation, Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen MR, Wiklund O, Agewall S, Alegria E, Chapman MJ, Durrington P, Erdine S, Halcox J, Hobbs R, Kjekshus J, Filardi PP, Riccardi G, Storey RF, Wood D, Guidelines, E. S. C. C. F. P. & Committees. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011;32:1769–818.CrossRefGoogle Scholar
  7. 7.
    Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Dohi S, Egusa G, Hiro T, Hirobe K, Iida M, Kihara S, Kinoshita M, Maruyama C, Ohta T, Okamura T, Yamashita S, Yokode M, Yokote K, Japan Atherosclerosis, S. Executive summary of the Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and prevention of atherosclerotic cardiovascular diseases in Japan −2012 version. J Atheroscler Thromb. 2013;20:517–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, Mckenney JM, Grundy SM, Gill EA, Wild RA, Wilson DP, Brown WV. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1 - executive summary. J Clin Lipidol. 2014;8:473–88.PubMedCrossRefGoogle Scholar
  9. 9.
    Writing C, Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, Depalma SM, Minissian MB, Orringer CE, Smith SC. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-Cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2016;68:92–125.CrossRefGoogle Scholar
  10. 10.
    Stone, N. J., Robinson, J., Lichtenstein, A. H., Merz, C. N., Blum, C. B., Eckel, R. H., Goldberg, A. C., Gordon, D., Levy, D., Lloyd-Jones, D. M., Mcbride, P., Schwartz, J. S., Shero, S. T., Smith, S. C., Watson, K. & Wilson, P. W. 2013. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults:. Circulation, 129, S1-72.PubMedCrossRefGoogle Scholar
  11. 11.
    Downs JR, O'malley PG. Management of dyslipidemia for cardiovascular disease risk reduction: synopsis of the 2014 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guideline. Ann Intern Med. 2015;163:291.PubMedCrossRefGoogle Scholar
  12. 12.
    ADA 2015. Standards of medical care in diabetes--2015: summary of revisions. Diabetes Care. 38(Suppl):S4.Google Scholar
  13. 13.
    Handelsman Y, Bloomgarden ZT, Grunberger G, Umpierrez G, Zimmerman RS, Bailey TS, Blonde L, Bray GA, Cohen AJ, Dagogo-Jack S, Davidson JA, Einhorn D, Ganda OP, Garber AJ, Garvey WT, Henry RR, Hirsch IB, Horton ES, Hurley DL, Jellinger PS, Jovanovic L, Lebovitz HE, Leroith D, Levy P, Mcgill JB, Mechanick JI, Mestman JH, Moghissi ES, Orzeck EA, Pessah-Pollack R, Rosenblit PD, Vinik AI, Wyne K, Zangeneh F. American association of clinical endocrinologists and american college of endocrinology - clinical practice guidelines for developing a diabetes mellitus comprehensive care plan - 2015. Endocr Pract. 2015;21:1–87.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Colantonio LD, Baber U, Banach M, Tanner RM, Warnock DG, Gutierrez OM, Safford MM, Wanner C, Howard G, Muntner P. Contrasting cholesterol management guidelines for adults with CKD. J Am Soc Nephrol. 2015;26:1173–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Atthobari J, Brantsma AH, Gansevoort RT, Visser ST, Asselbergs FW, Van Gilst WH, De Jong PE, De Jong-Van Den Berg LT. The effect of statins on urinary albumin excretion and glomerular filtration rate: results from both a randomized clinical trial and an observational cohort study. Nephrol Dial Transplant. 2006;21:3106–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Rahman M, Yang W, Akkina S, Alper A, Anderson AH, Appel LJ, He J, Raj DS, Schelling J, Strauss L, Teal V, Rader DJ, For the, C. S. I. Relation of serum lipids and lipoproteins with progression of CKD: the CRIC Study. Clin J Am Soc Nephrol. 2014;9:1190.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Tonelli M, Isles C, Craven T, Tonkin A, Pfeffer MA, Shepherd J, Sacks FM, Furberg C, Cobbe SM, Simes J, West M, Packard C, Curhan GC. Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease. Circulation. 2005;112:171–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Charlton-Menys V, Demicco DA, Fuller JH, Investigators, C. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am J Kidney Dis. 2009;54:810–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Koren MJ, Hunninghake DB. Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid-lowering disease management clinics: the alliance study. J Am Coll Cardiol. 2004;44:1772–9.PubMedGoogle Scholar
  20. 20.
    Lemos PA, Serruys PW, De Feyter P, Mercado NF, Goedhart D, Saia F, Arampatzis CA, Soares PR, Ciccone M, Arquati M, Cortellaro M, Rutsch W, Legrand V. Long-term fluvastatin reduces the hazardous effect of renal impairment on four-year atherosclerotic outcomes (a LIPS substudy). Am J Cardiol. 2005;95:445–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Palmer SC, Navaneethan SD, Craig JC, Johnson DW, Perkovic V, Hegbrant J, Strippoli GF. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. 2014;5:CD007784.Google Scholar
  22. 22.
    Hou W, Lv J, Perkovic V, Yang L, Zhao N, Jardine MJ, Cass A, Zhang H, Wang H. Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. Eur Heart J. 2013;34:1807–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Herzog CA. Sudden cardiac death and acute myocardial infarction in dialysis patients: perspectives of a cardiologist. Semin Nephrol. 2005;25:363–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Baigent C, Burbury K, Wheeler D. Premature cardiovascular disease in chronic renal failure. Lancet. 2000;356:147–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Sarnak MJ. Cardiovascular complications in chronic kidney disease. Am J Kidney Dis. 2003;41:11–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Sniderman AD, Solhpour A, Alam A, Williams K, Sloand JA. Cardiovascular death in dialysis patients: lessons we can learn from AURORA. Clin J Am Soc Nephrol. 2010;5:335–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Palmer SC, Navaneethan SD, Craig JC, Johnson DW, Perkovic V, Nigwekar SU, Hegbrant J, Strippoli GF. HMG CoA reductase inhibitors (statins) for dialysis patients. Cochrane Database Syst Rev. 2013;9:CD004289.Google Scholar
  28. 28.
    Stegmayr BG, Brannstrom M, Bucht S, Crougneau V, Dimeny E, Ekspong A, Eriksson M, Granroth B, Grontoft KC, Hadimeri H, Holmberg B, Ingman B, Isaksson B, Johansson G, Lindberger K, Lundberg L, Mikaelsson L, Olausson E, Persson B, Stenlund H, Wikdahl AM, NEDIAT Study, G. Low-dose atorvastatin in severe chronic kidney disease patients: a randomized, controlled endpoint study. Scand J Urol Nephrol. 2005;39:489–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G, Ritz E. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Marz W, Genser B, Drechsler C, Krane V, Grammer TB, Ritz E, Stojakovic T, Scharnagl H, Winkler K, Holme I, Holdaas H, Wanner C, German D, Dialysis Study, I. Atorvastatin and low-density lipoprotein cholesterol in type 2 diabetes mellitus patients on hemodialysis. Clin J Am Soc Nephrol. 2011;6:1316–25.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fellstrom BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, Chae DW, Chevaile A, Cobbe SM, Gronhagen-Riska C, de Lima JJ, Lins R, Mayer G, Mcmahon AW, Parving HH, Remuzzi G, Samuelsson O, Sonkodi S, Sci D, Suleymanlar G, Tsakiris D, Tesar V, Todorov V, Wiecek A, Wuthrich RP, Gottlow M, Johnsson E, Zannad F. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360:1395–407.PubMedCrossRefGoogle Scholar
  32. 32.
    Holme I, Fellstrom BC, Jardin AG, Schmieder RE, Zannad F, Holdaas H. Prognostic model for total mortality in patients with haemodialysis from the Assessments of Survival and Cardiovascular Events (AURORA) study. J Intern Med. 2012;271:463–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, Wanner C, Krane V, Cass A, Craig J, Neal B, Jiang L, Hooi LS, Levin A, Agodoa L, Gaziano M, Kasiske B, Walker R, Massy ZA, Feldt-Rasmussen B, Krairittichai U, Ophascharoensuk V, Fellstrom B, Holdaas H, Tesar V, Wiecek A, Grobbee D, de Zeeuw D, Gronhagen-Riska C, Dasgupta T, Lewis D, Herrington W, Mafham M, Majoni W, Wallendszus K, Grimm R, Pedersen T, Tobert J, Armitage J, Baxter A, Bray C, Chen Y, Chen Z, Hill M, Knott C, Parish S, Simpson D, Sleight P, Young A, Collins R, Investigators S. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Attman PO, Samuelsson O, Johansson AC, Moberly JB, Alaupovic P. Dialysis modalities and dyslipidemia. Kidney Int Suppl. 2003;(84):S110–2.Google Scholar
  35. 35.
    Goldfarb-Rumyantzev AS, Habib AN, Baird BC, Barenbaum LL, Cheung AK. The association of lipid-modifying medications with mortality in patients on long-term peritoneal dialysis. Am J Kidney Dis. 2007;50:791–802.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee JE, Oh KH, Choi KH, Kim SB, Kim YS, Do JY, Kim YL, Kim DJ. Statin therapy is associated with improved survival in incident peritoneal dialysis patients: propensity-matched comparison. Nephrol Dial Transplant. 2011a;26:4090–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Holdaas H, Fellstrom B, Jardine AG, Holme I, Nyberg G, Fauchald P, Gronhagen-Riska C, Madsen S, Neumayer HH, Cole E, Maes B, Ambuhl P, Olsson AG, Hartmann A, Solbu DO, Pedersen TR. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet. 2003;361:2024–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Holdaas H, Fellstrom B, Jardine AG, Nyberg G, Gronhagen-Riska C, Madsen S, Neumayer HH, Cole E, Maes B, Ambuhl P, Logan JO, Staffler B, Gimpelewicz C, Group, A. S. Beneficial effect of early initiation of lipid-lowering therapy following renal transplantation. Nephrol Dial Transplant. 2005;20:974–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Holdaas H, Fellstrom B, Cole E, Nyberg G, Olsson AG, Pedersen TR, Madsen S, Gronhagen-Riska C, Neumayer HH, Maes B, Ambuhl P, Hartmann A, Staffler B, Jardine AG. Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am J Transplant. 2005;5:2929–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001;59:260–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Douglas K, O'malley PG, Jackson JL. Meta-analysis: the effect of statins on albuminuria. Ann Intern Med. 2006;145:117–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Sandhu S, Wiebe N, Fried LF, Tonelli M. Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol. 2006;17:2006–16.PubMedCrossRefGoogle Scholar
  43. 43.
    Strippoli GF, Navaneethan SD, Johnson DW, Perkovic V, Pellegrini F, Nicolucci A, Craig JC. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ. 2008;336:645–51.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Heerspink HJ, Kropelin TF, Hoekman J, de Zeeuw D, Reducing Albuminuria As Surrogate Endpoint, C. Drug-induced reduction in albuminuria is associated with subsequent renoprotection: a meta-analysis. J Am Soc Nephrol. 2015;26:2055–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Haynes R, Lewis D, Emberson J, Reith C, Agodoa L, Cass A, Craig JC, De Zeeuw D, Feldt-Rasmussen B, Fellstrom B, Levin A, Wheeler DC, Walker R, Herrington WG, Baigent C, Landray MJ, Group, S. C. & Group, S. C. Effects of lowering LDL cholesterol on progression of kidney disease. J Am Soc Nephrol. 2014;25:1825–33.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Geng Q, Ren J, Song J, Li S, Chen H. Meta-analysis of the effect of statins on renal function. Am J Cardiol. 2014;114:562–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Sanguankeo A, Upala S, Cheungpasitporn W, Ungprasert P, Knight EL. Effects of statins on renal outcome in chronic kidney disease patients: a systematic review and meta-analysis. PLoS One. 2015;10:e0132970.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hanai K, Babazono T, Takemura S, Toyonaga A, Yoshida N, Uchigata Y. Comparative effects of statins on the kidney function in patients with type 2 diabetes. J Atheroscler Thromb. 2015;22:618–27.PubMedCrossRefGoogle Scholar
  49. 49.
    Kimura S, Inoguchi T, Yokomizo H, Maeda Y, Sonoda N, Takayanagi R. Randomized comparison of pitavastatin and pravastatin treatment on the reduction of urinary albumin in patients with type 2 diabetic nephropathy. Diabetes Obes Metab. 2012;14:666–9.PubMedCrossRefGoogle Scholar
  50. 50.
    DE Zeeuw D, Anzalone DA, Cain VA, Cressman MD, Heerspink HJ, Molitoris BA, Monyak JT, Parving HH, Remuzzi G, Sowers JR, Vidt DG. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes Endocrinol. 2015;3:181–90.PubMedCrossRefGoogle Scholar
  51. 51.
    Abe M, Maruyama N, Okada K, Matsumoto S, Matsumoto K, Soma M. Effects of lipid-lowering therapy with rosuvastatin on kidney function and oxidative stress in patients with diabetic nephropathy. J Atheroscler Thromb. 2011;18:1018–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Amarenco, P., Callahan, A., Campese, V. M., Goldstein, L. B., Hennerici, M. G., Messig, M., Sillesen, H., Welch, K. M., Wilson, D. J. & Zivin, J. A. 2014. Effect of high-dose atorvastatin on renal function in subjects with stroke or transient ischemic attack in the SPARCL trial. Stroke, 45, 2974-2982.PubMedCrossRefGoogle Scholar
  53. 53.
    Cadnapaphornchai MA, George DM, Mcfann K, Wang W, Gitomer B, Strain JD, Schrier RW. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2014;9:889–96.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Buemi M, Allegra A, Corica F, Aloisi C, Giacobbe M, Pettinato G, Corsonello A, Senatore M, Frisina N. Effect of fluvastatin on proteinuria in patients with immunoglobulin A nephropathy. Clin Pharmacol Ther. 2000;67:427–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Longenecker CT, Hileman CO, Funderburg NT, Mccomsey GA. Rosuvastatin preserves renal function and lowers cystatin C in HIV-infected subjects on antiretroviral therapy: the SATURN-HIV trial. Clin Infect Dis. 2014;59:1148–56.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wanner C. HMG-CoA reductase inhibitor treatment in renal insufficiency. Nephrol Dial Transplant. 1996;11:1951–2.PubMedCrossRefGoogle Scholar
  57. 57.
    Shepherd J, Kastelein JJ, Bittner V, Deedwania P, Breazna A, Dobson S, Wilson DJ, Zuckerman A, Wenger NK. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study. J Am Coll Cardiol. 2008;51:1448–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Ridker PM, Macfadyen J, Cressman M, Glynn RJ. Efficacy of rosuvastatin among men and women with moderate chronic kidney disease and elevated high-sensitivity C-reactive protein. J Am Coll Cardiol. 2010;55:1266–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I, Isles C, Lorimer AR, Macfarlane PW, Mckillop JH, Packard CJ, Shepherd J, Gaw A. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation. 2001;103:357–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Ridker PM, Pradhan A, Macfadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380:565–71.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rajpathak SN, Kumbhani DJ, Crandall J, Barzilai N, Alderman M, Ridker PM. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32:1924–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mills EJ, Wu P, Chong G, Ghement I, Singh S, Akl EA, Eyawo O, Guyatt G, Berwanger O, Briel M. Efficacy and safety of statin treatment for cardiovascular disease: a network meta-analysis of 170,255 patients from 76 randomized trials. QJM. 2011;104:109–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, Demicco DA, Barter P, Cannon CP, Sabatine MS, Braunwald E, Kastelein JJ, De Lemos JA, Blazing MA, Pedersen TR, Tikkanen MJ, Sattar N, Ray KK. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.PubMedCrossRefGoogle Scholar
  64. 64.
    Navarese EP, Buffon A, Andreotti F, Kozinski M, Welton N, Fabiszak T, Caputo S, Grzesk G, Kubica A, Swiatkiewicz I, Sukiennik A, Kelm M, de Servi S, Kubica J. Meta-analysis of impact of different types and doses of statins on new-onset diabetes mellitus. Am J Cardiol. 2013;111:1123–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, Seshasai SR, Mcmurray JJ, Freeman DJ, Jukema JW, Macfarlane PW, Packard CJ, Stott DJ, Westendorp RG, Shepherd J, Davis BR, Pressel SL, Marchioli R, Marfisi RM, Maggioni AP, Tavazzi L, Tognoni G, Kjekshus J, Pedersen TR, Cook TJ, Gotto AM, Clearfield MB, Downs JR, Nakamura H, Ohashi Y, Mizuno K, Ray KK, Ford I. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Blackburn DF, Chow JY, Smith AD. Statin use and incident diabetes explained by bias rather than biology. Can J Cardiol. 2015;31:966–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Vallejo-Vaz AJ, Kondapally Seshasai SR, Kurogi K, Michishita I, Nozue T, Sugiyama S, Tsimikas S, Yoshida H, Ray KK. Effect of pitavastatin on glucose, HbA1c and incident diabetes: a meta-analysis of randomized controlled clinical trials in individuals without diabetes. Atherosclerosis. 2015;241:409–18.PubMedCrossRefGoogle Scholar
  68. 68.
    Steen DL, Bhatt DL. Statin potency associated with incident diabetes in a real-world evaluation. Evid Based Med. 2014;19:68.PubMedCrossRefGoogle Scholar
  69. 69.
    Zaharan NL, Williams D, Bennett K. Statins and risk of treated incident diabetes in a primary care population. Br J Clin Pharmacol. 2013;75:1118–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Kohli P, Waters DD, Nemr R, Arsenault BJ, Messig M, Demicco DA, Laskey R, Kastelein JJ. Risk of new-onset diabetes and cardiovascular risk reduction from high-dose statin therapy in pre-diabetics and non-pre-diabetics: an analysis from TNT and IDEAL. J Am Coll Cardiol. 2015;65:402–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Ong KL, Waters DD, Messig M, Demicco DA, Rye KA, Barter PJ. Effect of change in body weight on incident diabetes mellitus in patients with stable coronary artery disease treated with atorvastatin (from the treating to new targets study). Am J Cardiol. 2014;113:1593–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Shah RV, Allison MA, Lima JA, Bluemke DA, Abbasi SA, Ouyang P, Jerosch-Herold M, Ding J, Budoff MJ, Murthy VL. Liver fat, statin use, and incident diabetes: the multi-ethnic study of Atherosclerosis. Atherosclerosis. 2015;242:211–7.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    van de Woestijne AP, van der Graaf Y, Westerink J, Nathoe HM, Visseren FL. Effect of statin therapy on incident type 2 diabetes mellitus in patients with clinically manifest vascular disease. Am J Cardiol. 2015;115:441–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang KL, Liu CJ, Chao TF, Huang CM, Wu CH, Chen SJ, Chen TJ, Lin SJ, Chiang CE. Statins, risk of diabetes, and implications on outcomes in the general population. J Am Coll Cardiol. 2012;60:1231–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Jahangir E, Fazio S, Sampson UK. Incident diabetes and statins: the blemish of an undisputed heavy weight champion? Br J Clin Pharmacol. 2013;75:955–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Chan DC, Pang J, Watts GF. Pathogenesis and management of the diabetogenic effect of statins: a role for adiponectin and coenzyme Q10? Curr Atheroscler Rep. 2015;17:472.PubMedCrossRefGoogle Scholar
  77. 77.
    Yaluri N, Modi S, Lopez Rodriguez M, Stancakova A, Kuusisto J, Kokkola T, Laakso M. Simvastatin impairs insulin secretion by multiple mechanisms in MIN6 Cells. PLoS One. 2015;10:e0142902.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Baker WL, Talati R, White CM, Coleman CI. Differing effect of statins on insulin sensitivity in non-diabetics: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2010;87:98–107.PubMedCrossRefGoogle Scholar
  79. 79.
    Erqou S, Lee CC, Adler AI. Statins and glycaemic control in individuals with diabetes: a systematic review and meta-analysis. Diabetologia. 2014;57:2444–52.PubMedCrossRefGoogle Scholar
  80. 80.
    Foley RN, Murray AM, Li S, Herzog CA, Mcbean AM, Eggers PW, Collins AJ. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16:489–95.PubMedCrossRefGoogle Scholar
  81. 81.
    Antons KA, Williams CD, Baker SK, Phillips PS. Clinical perspectives of statin-induced rhabdomyolysis. Am J Med. 2006;119:400–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Kiortsis DN, Filippatos TD, Mikhailidis DP, Elisaf MS, Liberopoulos EN. Statin-associated adverse effects beyond muscle and liver toxicity. Atherosclerosis. 2007;195:7–16.PubMedCrossRefGoogle Scholar
  83. 83.
    Corrao G, Soranna D, Casula M, Merlino L, Porcellini MG, Catapano AL. High-potency statins increase the risk of acute kidney injury: evidence from a large population-based study. Atherosclerosis. 2014;234:224–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Dormuth CR, Hemmelgarn BR, Paterson JM, James MT, Teare GF, Raymond CB, Lafrance JP, Levy A, Garg AX, Ernst P, Canadian Network for Observational Drug Effect, S. Use of high potency statins and rates of admission for acute kidney injury: multicenter, retrospective observational analysis of administrative databases. BMJ. 2013;346:f880.PubMedCrossRefGoogle Scholar
  85. 85.
    Bangalore S, Fayyad R, Hovingh GK, Laskey R, Vogt L, Demicco DA, Waters DD, Treating To New Targets Steering, C. & investigators. Statin and the risk of renal-related serious adverse events: Analysis from the IDEAL, TNT, CARDS, ASPEN, SPARCL, and other placebo-controlled trials. Am J Cardiol. 2014;113:2018–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Sarma A, Cannon CP, de Lemos J, Rouleau JL, Lewis EF, Guo J, Mega JL, Sabatine MS, O'donoghue ML. The incidence of kidney injury for patients treated with a high-potency versus moderate-potency statin regimen after an acute coronary syndrome. J Am Heart Assoc. 2014;3:e000784.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Antoniou GA, Hajibandeh S, Hajibandeh S, Vallabhaneni SR, Brennan JA, Torella F. Meta-analysis of the effects of statins on perioperative outcomes in vascular and endovascular surgery. J Vasc Surg. 2015;61:519–532 e1.PubMedCrossRefGoogle Scholar
  88. 88.
    Pan SY, Wu VC, Huang TM, Chou HC, Ko WJ, Wu KD, Lee C, C. & GROUP, N. Effect of preoperative statin therapy on postoperative acute kidney injury in patients undergoing major surgery: systemic review and meta-analysis. Nephrology (Carlton). 2014;19:750–63.CrossRefGoogle Scholar
  89. 89.
    Wang L, Peng P, Zhang O, Xu X, Yang S, Zhao Y, Zhou Y. High-dose statin pretreatment decreases periprocedural myocardial infarction and cardiovascular events in patients undergoing elective percutaneous coronary intervention: a meta-analysis of twenty-four randomized controlled trials. PLoS One. 2014;9:e113352.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lewicki M, Ng I, Schneider AG. HMG CoA reductase inhibitors (statins) for preventing acute kidney injury after surgical procedures requiring cardiac bypass. Cochrane Database Syst Rev. 2015;3:CD010480.Google Scholar
  91. 91.
    Quintavalle C, Fiore D, de Micco F, Visconti G, Focaccio A, Golia B, Ricciardelli B, Donnarumma E, Bianco A, Zabatta MA, Troncone G, Colombo A, Briguori C, Condorelli G. Impact of a high loading dose of atorvastatin on contrast-induced acute kidney injury. Circulation. 2012;126:3008–16.PubMedCrossRefGoogle Scholar
  92. 92.
    Han Y, Zhu G, Han L, Hou F, Huang W, Liu H, Gan J, Jiang T, Li X, Wang W, Ding S, Jia S, Shen W, Wang D, Sun L, Qiu J, Wang X, Li Y, Deng J, Li J, Xu K, Xu B, Mehran R, Huo Y. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol. 2014;63:62–70.PubMedCrossRefGoogle Scholar
  93. 93.
    Lee JM, Park J, Jeon KH, Jung JH, Lee SE, Han JK, Kim HL, Yang HM, Park KW, Kang HJ, Koo BK, Jo SH, Kim HS. Efficacy of short-term high-dose statin pretreatment in prevention of contrast-induced acute kidney injury: updated study-level meta-analysis of 13 randomized controlled trials. PLoS One. 2014;9:e111397.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tropeano F, Leoncini M, Toso A, Maioli M, Dabizzi L, Biagini D, Villani S, Bellandi F. Impact of Rosuvastatin in contrast-induced acute kidney injury in the elderly: Post Hoc analysis of the PRATO-ACS trial. J Cardiovasc Pharmacol Ther. 2015;21:159.PubMedCrossRefGoogle Scholar
  95. 95.
    Giacoppo D, Capodanno D, Capranzano P, Aruta P, Tamburino C. Meta-analysis of randomized controlled trials of preprocedural statin administration for reducing contrast-induced acute kidney injury in patients undergoing coronary catheterization. Am J Cardiol. 2014;114:541–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang J, Li Y, Tao GZ, Chen YD, Hu TH, Cao XB, Jing QM, Wang XZ, Ma YY, Wang G, Liu HW, Wang B, Xu K, Li J, Deng J, Han YL. Short-term rosuvastatin treatment for the prevention of contrast-induced acute kidney injury in patients receiving moderate or high volumes of contrast media: a sub-analysis of the TRACK-D study. Chin Med J. 2015;128:784–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Li W, Fu X, Wang Y, Li X, Yang Z, Wang X, Geng W, Gu X, Hao G, Jiang Y, Fan W, Wu W, Li S. Beneficial effects of high-dose atorvastatin pretreatment on renal function in patients with acute ST-segment elevation myocardial infarction undergoing emergency percutaneous coronary intervention. Cardiology. 2012;122:195–202.PubMedCrossRefGoogle Scholar
  98. 98.
    Toso A, Leoncini M, Maioli M, Tropeano F, Di Vincenzo E, Villani S, Bellandi F. Relationship between inflammation and benefits of early high-dose rosuvastatin on contrast-induced nephropathy in patients with acute coronary syndrome: the pathophysiological link in the PRATO-ACS study (Protective effect of Rosuvastatin and antiplatelet therapy on contrast-induced nephropathy and myocardial damage in patients with acute coronary Syndrome undergoing coronary intervention). JACC Cardiovasc Interv. 2014;7:1421–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Peruzzi M, de Luca L, Thomsen HS, Romagnoli E, D'ascenzo F, Mancone M, Sardella G, Lucisano L, Abbate A, Frati G, Biondi-Zoccai G. A network meta-analysis on randomized trials focusing on the preventive effect of statins on contrast-induced nephropathy. Biomed Res Int. 2014;2014:213239.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ukaigwe A, Karmacharya P, Mahmood M, Pathak R, Aryal MR, Jalota L, Donato AA. Meta-analysis on efficacy of statins for prevention of contrast-induced acute kidney injury in patients undergoing coronary angiography. Am J Cardiol. 2014;114:1295–302.PubMedCrossRefGoogle Scholar
  101. 101.
    Liu YH, Liu Y, Duan CY, Tan N, Chen JY, Zhou YL, Li LW, He PC. Statins for the prevention of contrast-induced nephropathy after coronary angiography/percutaneous interventions: a meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol Ther. 2015;20:181–92.PubMedCrossRefGoogle Scholar
  102. 102.
    Qiao B, Deng J, Li Y, Wang X, Han Y. Rosuvastatin attenuated contrast-induced nephropathy in diabetes patients with renal dysfunction. Int J Clin Exp Med. 2015;8:2342–9.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Manninen V, et al. Helsinki heart study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317:1237–45.PubMedCrossRefGoogle Scholar
  104. 104.
    Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schaefer EJ, Schectman G, Wilt TJ, Wittes J. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999;341:410–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Bloomfield Rubins H, Davenport J, Babikian V, Brass LM, Collins D, Wexler L, Wagner S, Papademetriou V, Rutan G, Robins SJ, Group, V.-H. S. Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol: The Veterans Affairs HDL Intervention Trial (VA-HIT). Circulation. 2001;103:2828–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Pierce LR, Wysowski DK, Gross TP. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA. 1990;264:71–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Pan WJ, Gustavson LE, Achari R, Rieser MJ, Ye X, Gutterman C, Wallin BA. Lack of a clinically significant pharmacokinetic interaction between fenofibrate and pravastatin in healthy volunteers. J Clin Pharmacol. 2000;40:316–23.PubMedCrossRefGoogle Scholar
  108. 108.
    Bergman AJ, Murphy G, Burke J, Zhao JJ, Valesky R, Liu L, Lasseter KC, He W, Prueksaritanont T, Qiu Y, Hartford A, Vega JM, Paolini JF. Simvastatin does not have a clinically significant pharmacokinetic interaction with fenofibrate in humans. J Clin Pharmacol. 2004;44:1054–62.PubMedCrossRefGoogle Scholar
  109. 109.
    Whitfield LR, Porcari AR, Alvey C, Abel R, Bullen W, Hartman D. Effect of gemfibrozil and fenofibrate on the pharmacokinetics of atorvastatin. J Clin Pharmacol. 2011;51:378–88.PubMedCrossRefGoogle Scholar
  110. 110.
    DAIS. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357:905–10.CrossRefGoogle Scholar
  111. 111.
    Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, D'emden M, Whiting M, Ehnholm C, Laakso M. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Jun M, Zhu B, Tonelli M, Jardine MJ, Patel A, Neal B, Liyanage T, Keech A, Cass A, Perkovic V. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60:2061–71.PubMedCrossRefGoogle Scholar
  113. 113.
    Group, A. S, Ginsberg HN, Elam MB, Lovato LC, Crouse JR, Leiter LA, Linz P, Friedewald WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismail-Beigi F, Bigger JT, Goff DC, Cushman WC, Simons-Morton DG, Byington RP. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.CrossRefGoogle Scholar
  114. 114.
    Broeders N, Knoop C, Antoine M, Tielemans C, Abramowicz D. Fibrate-induced increase in blood urea and creatinine: is gemfibrozil the only innocuous agent? Nephrol Dial Transplant. 2000;15:1993–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Nissen SE, Nicholls SJ, Wolski K, Howey DC, Mcerlean E, Wang MD, Gomez EV, Russo JM. Effects of a potent and selective PPAR-alpha agonist in patients with atherogenic dyslipidemia or hypercholesterolemia: two randomized controlled trials. JAMA. 2007;297:1362–73.PubMedCrossRefGoogle Scholar
  116. 116.
    Ansquer JC, Foucher C, Rattier S, Taskinen MR, Steiner G. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am J Kidney Dis. 2005;45:485–93.PubMedCrossRefGoogle Scholar
  117. 117.
    Mcpherson R, Frohlich J, Fodor G, Genest J, Canadian Cardiovascular, S. Canadian Cardiovascular Society position statement--recommendations for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease. Can J Cardiol. 2006;22:913–27.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Davis TM, Ting R, Best JD, Donoghoe MW, Drury PL, Sullivan DR, Jenkins AJ, O'connell RL, Whiting MJ, Glasziou PP, Simes RJ, Kesaniemi YA, Gebski VJ, Scott RS, Keech AC, Fenofibrate I, Event Lowering in Diabetes Study, I. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. 2011;54:280–90.PubMedCrossRefGoogle Scholar
  119. 119.
    Mychaleckyj JC, Craven T, Nayak U, Buse J, Crouse JR, Elam M, Kirchner K, Lorber D, Marcovina S, Sivitz W, Sperl-Hillen J, Bonds DE, Ginsberg HN. Reversibility of fenofibrate therapy-induced renal function impairment in ACCORD type 2 diabetic participants. Diabetes Care. 2012;35:1008–14.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Bonds DE, Craven TE, Buse J, Crouse JR, Cuddihy R, Elam M, Ginsberg HN, Kirchner K, Marcovina S, Mychaleckyj JC, O'connor PJ, Sperl-Hillen JA. Fenofibrate-associated changes in renal function and relationship to clinical outcomes among individuals with type 2 diabetes. Diabetologia. 2012;55:1641–50.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Altschul RA, Hoffer A, Stephen JD. Influence of nicotinic acid on serum cholesterol in man. Arch Biochem. 1955;54:558.PubMedCrossRefGoogle Scholar
  122. 122.
    Kamanna VS, Ganji SH, Kashyap ML. Recent advances in niacin and lipid metabolism. Curr Opin Lipidol. 2013;24:239–45.PubMedCrossRefGoogle Scholar
  123. 123.
    Reiche I, Westphal S, Martens-Lobenhoffer J, Troger U, Luley C, Bode-Boger SM. Pharmacokinetics and dose recommendations of Niaspan(R) in chronic kidney disease and dialysis patients. Nephrol Dial Transplant. 2011;26:276–82.PubMedCrossRefGoogle Scholar
  124. 124.
    Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cashin-Hemphill L. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA. 1987;257:3233–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Thoenes M, Oguchi A, Nagamia S, Vaccari CS, Hammoud R, Umpierrez GE, Khan BV. The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. Int J Clin Pract. 2007;61:1942–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Taylor AJ, Lee HJ, Sullenberger LE. The effect of 24 months of combination statin and extended-release niacin on carotid intima-media thickness: ARBITER 3. Curr Med Res Opin. 2006;22:2243–50.PubMedCrossRefGoogle Scholar
  127. 127.
    Taylor AJ, Villines TC, Stanek EJ, Devine PJ, Griffen L, Miller M, Weissman NJ, Turco M. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med. 2009;361:2113–22.PubMedCrossRefGoogle Scholar
  128. 128.
    Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis. 2010;210:353–61.PubMedCrossRefGoogle Scholar
  129. 129.
    Lavigne PM, Karas RH. The current state of niacin in cardiovascular disease prevention: a systematic review and meta-regression. J Am Coll Cardiol. 2013;61:440–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Investigators A-H, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, Mcbride R, Teo K, Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.CrossRefGoogle Scholar
  131. 131.
    Group, H. T. C, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, Wallendszus K, Craig M, Jiang L, Collins R, Armitage J. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.CrossRefGoogle Scholar
  132. 132.
    Guyton JR, Slee AE, Anderson T, Fleg JL, Goldberg RB, Kashyap ML, Marcovina SM, Nash SD, O'brien KD, Weintraub WS, Xu P, Zhao XQ, Boden WE. Relationship of lipoproteins to cardiovascular events: the AIM-HIGH Trial. J Am Coll Cardiol. 2013;62:1580–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Kalil RS, Wang JH, de Boer IH, Mathew RO, Ix JH, Asif A, Shi X, Boden WE. Effect of extended-release niacin on cardiovascular events and kidney function in chronic kidney disease: a post hoc analysis of the AIM-HIGH trial. Kidney Int. 2015;87:1250.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Streja E, Kovesdy CS, Streja DA, Moradi H, Kalantar-Zadeh K, Kashyap ML. Niacin and the progression of chronic kidney disease. Am J Kidney Dis. 2015;65 (in print)Google Scholar
  135. 135.
    Taketani Y, Masuda M, Yamanaka-Okumura H, Tatsumi S, Segawa H, Miyamoto K, Takeda E, Yamamoto H. Niacin and Chronic Kidney Disease. J Nutr Sci Vitaminol (Tokyo). 2015;61(Suppl):S173–5.CrossRefGoogle Scholar
  136. 136.
    Moradi H, Pahl MV, Elahimehr R, Vaziri ND. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res. 2009;153:77–85.PubMedCrossRefGoogle Scholar
  137. 137.
    Kalantar-Zadeh K, Kopple JD, Kamranpour N, Fogelman AM, Navab M. HDL-inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int. 2007;72:1149–56.PubMedCrossRefGoogle Scholar
  138. 138.
    Ganji SH, Kamanna VS, Kashyap ML. Niacin decreases leukocyte myeloperoxidase: mechanistic role of redox agents and Src/p38MAP kinase. Atherosclerosis. 2014;235:554–61.PubMedCrossRefGoogle Scholar
  139. 139.
    Chesney CM, Elam MB, Herd JA, Davis KB, Garg R, Hunninghake D, Kennedy JW, Applegate WB. Effect of niacin, warfarin, and antioxidant therapy on coagulation parameters in patients with peripheral arterial disease in the Arterial Disease Multiple Intervention Trial (ADMIT). Am Heart J. 2000;140:631–6.PubMedCrossRefGoogle Scholar
  140. 140.
    Lin TH, Voon WC, Yen HW, Huang CH, Su HM, Lai WT, Sheu SH. Randomized comparative study of the effects of treatment with once-daily, niacin extended-release/lovastatin and with simvastatin on lipid profile and fibrinolytic parameters in Taiwan. Kaohsiung J Med Sci. 2006;22:257–65.PubMedCrossRefGoogle Scholar
  141. 141.
    Ferguson JF, Patel PN, Shah RY, Mulvey CK, Gadi R, Nijjar PS, Usman HM, Mehta NN, Shah R, Master SR, Propert KJ, Reilly MP. Race and gender variation in response to evoked inflammation. J Transl Med. 2013;11:63.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wi J, Kim JY, Park S, Kang SM, Jang Y, Chung N, Shim WH, Cho SY, Lee SH. Optimal pharmacologic approach to patients with hypertriglyceridemia and low high-density lipoprotein-cholesterol: randomized comparison of fenofibrate 160 mg and niacin 1500 mg. Atherosclerosis. 2010;213:235–40.PubMedCrossRefGoogle Scholar
  143. 143.
    Lee K, Ahn TH, Kang WC, Han SH, Choi IS, Shin EK. The effects of statin and niacin on plaque stability, plaque regression, inflammation and oxidative stress in patients with mild to moderate coronary artery stenosis. Korean Circ J. 2011b;41:641–8.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Warnholtz A, Wild P, Ostad MA, Elsner V, Stieber F, Schinzel R, Walter U, Peetz D, Lackner K, Blankenberg S, Munzel T. Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF study. Atherosclerosis. 2009;204:216–21.PubMedCrossRefGoogle Scholar
  145. 145.
    Maccubbin D, Tipping D, Kuznetsova O, Hanlon WA, Bostom AG. Hypophosphatemic effect of niacin in patients without renal failure: a randomized trial. Clin J Am Soc Nephrol. 2010;5:582–9.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Hu S, Shearer GC, Steffes MW, Harris WS, Bostom AG. Once-daily extended-release niacin lowers serum phosphorus concentrations in patients with metabolic syndrome dyslipidemia. Am J Kidney Dis. 2011;57:181.PubMedCrossRefGoogle Scholar
  147. 147.
    Bostom AG, Maclean AA, Maccubbin D, Tipping D, Giezek H, Hanlon WA. Extended-release niacin/laropiprant lowers serum phosphorus concentrations in patients with type 2 diabetes. J Clin Lipidol. 2011;5:281–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Ix, J. H., Ganjoo, P., Tipping, D., Tershakovec, A. M. & Bostom, A. G. 2011. Sustained hypophosphatemic effect of once-daily niacin/laropiprant in dyslipidemic CKD stage 3 patients. Am J Kidney Dis57963Google Scholar
  149. 149.
    Sampathkumar K, Selvam M, Sooraj YS, Gowthaman S, Ajeshkumar RN. Extended release nicotinic acid - a novel oral agent for phosphate control. Int Urol Nephrol. 2006;38:171–4.PubMedCrossRefGoogle Scholar
  150. 150.
    Muller D, Mehling H, Otto B, Bergmann-Lips R, Luft F, Jordan J, Kettritz R. Niacin lowers serum phosphate and increases HDL cholesterol in dialysis patients. Clin J Am Soc Nephrol. 2007;2:1249–54.PubMedCrossRefGoogle Scholar
  151. 151.
    Restrepo Valencia CA, Cruz J. Safety and effectiveness of nicotinic acid in the management of patients with chronic renal disease and hyperlipidemia associated to hyperphosphatemia. Nefrologia. 2008;28:61–6.PubMedGoogle Scholar
  152. 152.
    Ahmadi F, Shamekhi F, Lessan-Pezeshki M, Khatami MR. Comparison of efficacy of the phosphate binders nicotinic acid and sevelamer hydrochloride in hemodialysis patients. Saudi J Kidney Dis Transpl. 2012;23:934–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Cho KH, Kim HJ, Kamanna VS, Vaziri ND. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochim Biophys Acta. 2010;1800:6–15.PubMedCrossRefGoogle Scholar
  154. 154.
    Cho KH, Kim HJ, Rodriguez-Iturbe B, Vaziri ND. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am J Physiol Renal Physiol. 2009;297:F106–13.PubMedCrossRefGoogle Scholar
  155. 155.
    Packard CJ, Shepherd J. The hepatobiliary axis and lipoprotein metabolism: effects of bile acid sequestrants and ileal bypass surgery. J Lipid Res. 1982;23:1081–98.PubMedGoogle Scholar
  156. 156.
    Moore RB, Buchwald H, Varco RL. The effect of partial ileal bypass on plasma lipoproteins. Circulation. 1980;62:469–76.PubMedCrossRefGoogle Scholar
  157. 157.
    Out C, Groen AK, Brufau G. Bile acid sequestrants: more than simple resins. Curr Opin Lipidol. 2012;23:43–55.PubMedCrossRefGoogle Scholar
  158. 158.
    Bays HE. Colesevelam hydrochloride added to background metformin therapy in patients with type 2 diabetes mellitus: a pooled analysis from 3 clinical studies. Endocr Pract. 2011;17:933–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Bays H, Dujovne C. Colesevelam HCl: a non-systemic lipid-altering drug. Expert Opin Pharmacother. 2003;4:779–90.PubMedGoogle Scholar
  160. 160.
    Buchwald H, Varco RL, Matts JP, Long JM, Fitch LL, Campbell GS, Pearce MB, Yellin AE, Edmiston WA, Smink RD, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med. 1990;323:946–55.PubMedCrossRefGoogle Scholar
  161. 161.
    Buchwald H, Williams SE, Matts JP, Nguyen PA, Boen JR. Overall mortality in the program on the surgical control of the hyperlipidemias. J Am Coll Surg. 2002;195:327–31.PubMedCrossRefGoogle Scholar
  162. 162.
    Chertow GM, Burke SK, Dillon MA, Slatopolsky E. Long-term effects of sevelamer hydrochloride on the calcium x phosphate product and lipid profile of haemodialysis patients. Nephrol Dial Transplant. 1999;14:2907–14.PubMedCrossRefGoogle Scholar
  163. 163.
    Date T, Shigematsu T, Kawashita Y, Satake N, Morita K. Colestimide can be used as a phosphate binder to treat uraemia in end-stage renal disease patients. Nephrol Dial Transplant. 2003;18(Suppl 3):iii90–3.PubMedGoogle Scholar
  164. 164.
    Kurihara S, Tsuruta Y, Akizawa T. Effect of MCI-196 (colestilan) as a phosphate binder on hyperphosphataemia in aemodialysis patients: a double-blind, placebo-controlled, short-term trial. Nephrol Dial Transplant. 2005;20:424–30.PubMedCrossRefGoogle Scholar
  165. 165.
    Locatelli F, Spasovski G, Dimkovic N, Wanner C, Dellanna F, Pontoriero G. The effects of colestilan versus placebo and sevelamer in patients with CKD 5D and hyperphosphataemia: a 1-year prospective randomized study. Nephrol Dial Transplant. 2014;29:1061–73.PubMedCrossRefGoogle Scholar
  166. 166.
    Wanner C, Marz W, Varushchanka A, Apanasovich N, Dosta N, Yakubtsevich R, Locatelli F. Dyslipidemia in chronic kidney disease: randomized controlled trial of colestilan versus simvastatin in dialysis patients. Clin Nephrol. 2014;82:163–72.PubMedCrossRefGoogle Scholar
  167. 167.
    Jamal SA, Vandermeer B, Raggi P, Mendelssohn DC, Chatterley T, Dorgan M, Lok CE, Fitchett D, Tsuyuki RT. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382:1268–77.PubMedCrossRefGoogle Scholar
  168. 168.
    St Peter WL, Liu J, Weinhandl E, Fan Q. A comparison of sevelamer and calcium-based phosphate binders on mortality, hospitalization, and morbidity in hemodialysis: a secondary analysis of the Dialysis Clinical Outcomes Revisited (DCOR) randomized trial using claims data. Am J Kidney Dis. 2008;51:445–54.PubMedCrossRefGoogle Scholar
  169. 169.
    Boaz M, Katzir Z, Schwartz D, Gafter U, Biro A, Shtendik L, Kon V, Chernin G, Weinstein T. Effect of sevelamer hydrochloride exposure on carotid intima media thickness in hemodialysis patients. Nephron Clin Pract. 2011;117:c83–8.PubMedCrossRefGoogle Scholar
  170. 170.
    Qunibi W, Moustafa M, Muenz LR, He DY, Kessler PD, Diaz-Buxo JA, Budoff M, Investigators, C. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am J Kidney Dis. 2008;51:952–65.PubMedCrossRefGoogle Scholar
  171. 171.
    Iimori S, Mori Y, Akita W, Takada S, Kuyama T, Ohnishi T, Shikuma S, Ishigami J, Tajima M, Asai T, Okado T, Kuwahara M, Sasaki S, Tsukamoto Y. Effects of sevelamer hydrochloride on mortality, lipid abnormality and arterial stiffness in hemodialyzed patients: a p ropensity-matched observational study. Clin Exp Nephrol. 2012;16:930–7.PubMedCrossRefGoogle Scholar
  172. 172.
    Chue CD, Townend JN, Moody WE, Zehnder D, Wall NA, Harper L, Edwards NC, Steeds RP, Ferro CJ. Cardiovascular effects of sevelamer in stage 3 CKD. J Am Soc Nephrol. 2013;24:842–52.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Cannon CP, Blazing MA, Giugliano RP, Mccagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM, Investigators, I.-I. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015;372:2387–97.PubMedCrossRefGoogle Scholar
  174. 174.
    Von Birgelen C, Hartmann M, Mintz GS, Baumgart D, Schmermund A, Erbel R. Relation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (> or =12 months) follow-up intravascular ultrasound. Circulation. 2003;108:2757–62.CrossRefGoogle Scholar
  175. 175.
    Puri R, Nissen SE, Shao M, Kataoka Y, Uno K, Kapadia SR, Tuzcu EM, Nicholls SJ. The beneficial effects of raising high-density lipoprotein cholesterol depends upon achieved levels of low-density lipoprotein cholesterol during statin therapy: Implications for coronary atheroma progression and cardiovascular events. Eur J Prev Cardiol. 2015;23:474.PubMedCrossRefGoogle Scholar
  176. 176.
    Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, Koren MJ, Lepor NE, Lorenzato C, Pordy R, Chaudhari U, Kastelein JJ, Investigators, O. L. T. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.PubMedCrossRefGoogle Scholar
  177. 177.
    Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA, Open-Label Study of Long-Term Evaluation Against, L. D. L. C. I. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Kwakernaak AJ, Lambert G, Slagman MC, Waanders F, Laverman GD, Petrides F, Dikkeschei BD, Navis G, Dullaart RP. Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis. 2013;226:459–65.PubMedCrossRefGoogle Scholar
  179. 179.
    Jin K, Park BS, Kim YW, Vaziri ND. Plasma PCSK9 in nephrotic syndrome and in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis. 2014;63:584–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Konarzewski M, Szolkiewicz M, Sucajtys-Szulc E, Blaszak J, Lizakowski S, Swierczynski J, Rutkowski B. Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am J Nephrol. 2014;40:157–63.PubMedCrossRefGoogle Scholar
  181. 181.
    Abujrad H, Mayne J, Ruzicka M, Cousins M, Raymond A, Cheesman J, Taljaard M, Sorisky A, Burns K, Ooi TC. Chronic kidney disease on hemodialysis is associated with decreased serum PCSK9 levels. Atherosclerosis. 2014;233:123–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, Committee, F. S. & Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713.PubMedCrossRefGoogle Scholar
  183. 183.
    Ito MK. A comparative overview of prescription omega-3 fatty acid products. P T. 2015;40:826–57.PubMedPubMedCentralGoogle Scholar
  184. 184.
    GISSI-PREVENZIONE. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet. 1999;354:447–55.CrossRefGoogle Scholar
  185. 185.
    Marchioli R, Barzi F, Bomba E, Chieffo C, DI Gregorio D, Di Mascio R, Franzosi MG, Geraci E, Levantesi G, Maggioni AP, Mantini L, Marfisi RM, Mastrogiuseppe G, Mininni N, Nicolosi GL, Santini M, Schweiger C, Tavazzi L, Tognoni G, Tucci C, Valagussa F. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105:1897–903.PubMedCrossRefGoogle Scholar
  186. 186.
    Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, Lucci D, Nicolosi GL, Porcu M, Tognoni G. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–30.PubMedCrossRefGoogle Scholar
  187. 187.
    Rauch B, Schiele R, Schneider S, Diller F, Victor N, Gohlke H, Gottwik M, Steinbeck G, del Castillo U, Sack R, Worth H, Katus H, Spitzer W, Sabin G, Senges J. OMEGA, a randomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation. 2010;122:2152–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Kromhout D, Giltay EJ, Geleijnse JM. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26.PubMedCrossRefGoogle Scholar
  189. 189.
    Galan P, Kesse-Guyot E, Czernichow S, Briancon S, Blacher J, Hercberg S. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial. BMJ. 341:c6273.Google Scholar
  190. 190.
    Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.PubMedCrossRefGoogle Scholar
  191. 191.
    Tanaka K, Ishikawa Y, Yokoyama M, Origasa H, Matsuzaki M, Saito Y, Matsuzawa Y, Sasaki J, Oikawa S, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke. 2008;39:2052–8.PubMedCrossRefGoogle Scholar
  192. 192.
    Oikawa S, Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K. Suppressive effect of EPA on the incidence of coronary events in hypercholesterolemia with impaired glucose metabolism: Sub-analysis of the Japan EPA Lipid Intervention Study (JELIS). Atherosclerosis. 2009;206:535–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Nakamura N, Fujita T, Kumasaka R, Murakami R, Shimada M, Shimaya Y, Osawa H, Yamabe H, Okumura K. Serum lipid profile and plasma fatty acid composition in hemodialysis patients--comparison with chronic kidney disease patients. In Vivo. 2008;22:609–11.PubMedGoogle Scholar
  194. 194.
    Hamazaki K, Terashima Y, Itomura M, Sawazaki S, Inagaki H, Kuroda M, Tomita S, Hirata H, Inadera H, Hamazaki T. Docosahexaenoic acid is an independent predictor of all-cause mortality in hemodialysis patients. Am J Nephrol. 2011;33:105–10.PubMedCrossRefGoogle Scholar
  195. 195.
    Friedman AN, Yu Z, Denski C, Tamez H, Wenger J, Thadhani R, Li Y, Watkins B. Fatty acids and other risk factors for sudden cardiac death in patients starting hemodialysis. Am J Nephrol. 2013;38:12–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Svensson M, Schmidt EB, Jorgensen KA, Christensen JH, Group, O. S. N-3 fatty acids as secondary prevention against cardiovascular events in patients who undergo chronic hemodialysis: a randomized, placebo-controlled intervention trial. Clin J Am Soc Nephrol. 2006;1:780–6.PubMedCrossRefGoogle Scholar
  197. 197.
    Lok CE, Moist L, Hemmelgarn BR, Tonelli M, Vazquez MA, Dorval M, Oliver M, Donnelly S, Allon M, Stanley K, Fish oil Inhibition of Stenosis in Hemodialysis Grafts Study, G. Effect of fish oil supplementation on graft patency and cardiovascular events among patients with new synthetic arteriovenous hemodialysis grafts: a randomized controlled trial. JAMA. 2012;307:1809–16.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Ferraro PM, Ferraccioli GF, Gambaro G, Fulignati P, Costanzi S. Combined treatment with renin-angiotensin system blockers and polyunsaturated fatty acids in proteinuric IgA nephropathy: a randomized controlled trial. Nephrol Dial Transplant. 2009;24:156–60.PubMedCrossRefGoogle Scholar
  199. 199.
    Chou HH, Chiou YY, Hung PH, Chiang PC, Wang ST. Omega-3 fatty acids ameliorate proteinuria but not renal function in IgA nephropathy: a meta-analysis of randomized controlled trials. Nephron Clin Pract. 2012;121:c30–5.PubMedCrossRefGoogle Scholar
  200. 200.
    Walldius G, Erikson U, Olsson AG, Bergstrand L, Hadell K, Johansson J, Kaijser L, Lassvik C, Molgaard J, Nilsson S, et al. The effect of probucol on femoral atherosclerosis: the Probucol Quantitative Regression Swedish Trial (PQRST). Am J Cardiol. 1994;74:875–83.PubMedCrossRefGoogle Scholar
  201. 201.
    Miyagawa F, Fukumoto T, Kobayashi N, Asada H. Successful treatment of diffuse normolipemic plane xanthoma with probucol. Case Rep Dermatol. 2013;5:148–51.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Daida H, Kuwabara Y, Yokoi H, Nishikawa H, Takatsu F, Nakata Y, Kutsumi Y, Oshima S, Nishiyama S, Ishiwata S, Kato K, Nishimura S, Miyauchi K, Kanoh T, Yamaguchi H. Effect of probucol on repeat revascularization rate after percutaneous transluminal coronary angioplasty (from the Probucol Angioplasty Restenosis Trial [PART]). Am J Cardiol. 2000;86:550–2, A9.PubMedCrossRefGoogle Scholar
  203. 203.
    Sawayama Y, Shimizu C, Maeda N, Tatsukawa M, Kinukawa N, Koyanagi S, Kashiwagi S, Hayashi J. Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST). J Am Coll Cardiol. 2002;39:610–6.PubMedCrossRefGoogle Scholar
  204. 204.
    Sawayama Y, Maeda S, Ohnishi H, Okada K, Hayashi J. Effect of probucol on elderly hypercholesterolemic patients in the FAST study. Fukuoka Igaku Zasshi. 2006;97:15–24.PubMedGoogle Scholar
  205. 205.
    Endo K, Miyashita Y, Sasaki H, Ohira M, Saiki A, Koide N, Otsuka M, Oyama T, Takeyoshi M, Ito Y, Shirai K. Probucol delays progression of diabetic nephropathy. Diabetes Res Clin Pract. 2006;71:156–63.PubMedCrossRefGoogle Scholar
  206. 206.
    Endo K, Saiki A, Yamaguchi T, Sakuma K, Sasaki H, Ban N, Kawana H, Nagayama D, Nagumo A, Ohira M, Oyama T, Murano T, Miyashita Y, Yamamura S, Suzuki Y, Shirai K, Tatsuno I. Probucol suppresses initiation of chronic hemodialysis therapy and renal dysfunction-related death in diabetic nephropathy patients: Sakura study. J Atheroscler Thromb. 2013;20:494–502.PubMedCrossRefGoogle Scholar
  207. 207.
    Ye Z, Zhang L, Xu L, Shi W, Hu H, Shi X, Zhong W, Hou S, Yan H, Zhang B, Xia Y, Wang W, Feng Z, Wang L, Liang Y. Probucol combined with valsartan in immunoglobulin A nephropathy: a multi-centre, open labelled, randomized controlled study. Nephrology (Carlton). 2014;19:40–6.CrossRefGoogle Scholar
  208. 208.
    Li G, Yin L, Liu T, Zheng X, Xu G, Xu Y, Yuan R, Che J, Liu H, Zhou L, Chen X, He M, Li Y, Wu L, Liu E. Role of probucol in preventing contrast-induced acute kidney injury after coronary interventional procedure. Am J Cardiol. 2009;103:512–4.PubMedCrossRefGoogle Scholar
  209. 209.
    Yin L, Li G, Liu T, Yuan R, Zheng X, Xu G, Xu Y, Che J, Liu X, Ma X, Li F, Liu E, Chen X, Wu L, Fan Z, Ruan Y, He M, Li Y. Probucol for the prevention of cystatin C-based contrast-induced acute kidney injury following primary or urgent angioplasty: a randomized, controlled trial. Int J Cardiol. 2013;167:426–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Nephrology and HypertensionUniversity of California Irvine School of MedicineOrangeUSA
  2. 2.Tibor Rubin Veterans Affairs Medical CenterLong BeachUSA
  3. 3.Department of MedicineDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Health Care SystemLos AngelesUSA

Personalised recommendations