Shoulder Anatomy

  • Stefano Gumina
  • Vittorio Candela
  • Giovanni Ziveri
  • Carlo Felice De Biase


The subacromial space is the space delimited above by the coraco-acromial arc (anterior-inferior margin of the acromion, coracoacromial ligament, apex and distal third of the posterior surface of the coracoid) and below by the humeral head, by the tendons of the rotator cuff and of the long head of the biceps. The area between the tendons of the supraspinatus and the subscapularis is called the rotator interval. The acromion is flat in shape and extends laterally, then antero-laterally. We distinguish an upper surface, in close contact with the skin, bearing rough scores and vascular orifices; an inferior concavity, which forms the tip of the gleno humeral joint; a lateral margin, the bundles from which the deltoid muscle originates; and a medial margin where the surface of the acromioclavicular joint is.

In the last thirty years, the shape of the acromion has been the object/topic of several studies because it was considered the cause predisposing aliments such as sub acromial impingement and rotator cuff tendon tears.


Subacromial space anatomy Shoulder anatomy Proximal Humerus Rotator cuff anatomy Shoulder tendons Gleno humeral joint 


  1. 1.
    Neer CS II. Anterior acromioplasty for the chronic impingement syndrome in the shoulder. J Bone Joint Surg Am. 1972;54:41–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Bigliani LU, Morrison DS, April EW. The morphology of the acromion and its relationship to the rotator cuff tears. Orthop Trans. 1986;10:228.Google Scholar
  3. 3.
    Flatow E, Coleman W, Kelkar R. The effect of anterior acromioplasty on rotator cuff contact: an experimental computer simulation. J Shoulder Elb Surg. 1995;4:S53–4.CrossRefGoogle Scholar
  4. 4.
    Wang J, Horner G, Brown E, Shapiro M. The relationship between acromial morphology and conservative treatment of patients with impingement syndrome. Orthopedics. 2000;23:257–559.Google Scholar
  5. 5.
    Gill T, McIrvin E, Kocher M, Homa K, Mair S, Hawkins R. The relative importance of acromial morphology and age with respect to rotator cuff pathology. J Shoulder Elb Surg. 2002;11:327–30.CrossRefGoogle Scholar
  6. 6.
    Natsis K, Tsikaras P, Totlis T. Correlation between the four types of acromion and the existence of enthesophytes: a study on 423 dried scapulas and review of the literature. Clin Anat. 2007;20:267–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Schippinger G, Bailey D, McNally E, Kiss J, Carr A. Anatomy of the normal acromion investigated using MRI. Langenbecks Arch Chir. 1997;382:141–4.PubMedGoogle Scholar
  8. 8.
    Vanarthos W, Monu J. Type 4 acromion: a new classification. Contemp Orthop. 1995;30:227–9.PubMedGoogle Scholar
  9. 9.
    Tucker T, Snyder S. The keeled acromion: an aggressive acromial variant- a series of 20 patients with associated rotator cuff tears. Arthroscopy. 2004;20:744–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Zuckerman J, Kummer F, Panos S. Characterization of acromial concavity: an in vitro computer analysis. Bull Hosp J Dis. 2000;59:69–72.Google Scholar
  11. 11.
    Chang E, Moses D, Babb J, Schweitzer M. Shoulder impingement: objective 3D shape analysis of acromion morphologic features. Radiology. 2006;239:497–505.PubMedCrossRefGoogle Scholar
  12. 12.
    Gumina S, Albino P, Carbone S, Arceri V, Passaretti D, Candela V, Vestri A, Postacchini F. The relationship between acromion thickness and body habitus: practical implications in subacromial decompression procedures. Musculoskeletal Surg. 2012;96:41.CrossRefGoogle Scholar
  13. 13.
    Gumina S. Morfometria ossea della spalla. Atti del Congresso sulle: Fratture e fratture-lussazioni della spalla. Roma 25–27 Marzo, 1999. pp. 9–12.Google Scholar
  14. 14.
    Edelson JG, Taitz C. Anatomy of the coraco-acromial arch. J Bone J Surg. 1992;74-B:589–94.CrossRefGoogle Scholar
  15. 15.
    Sammarco VJ. Os acromiale: frequency, anatomy and clinical implication. J Bone Joint Surg. 2000;82-A:394–400.CrossRefGoogle Scholar
  16. 16.
    Liberson F. Os acromiale – a contested anomaly. J Bone Joint Surg. 1937;19:683–9.Google Scholar
  17. 17.
    Boehm T, Rolf O, Martetschlaeger F, Kenn W, Gohlke F. Rotator cuff tears associated with os acromiale. Acta Orthop. 2005;76:241–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Mudge M, Wood V, Frykman G. Rotator cuff tears associated with os acromiale. J Bone Joint Surg Am. 1984;66:427–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Park J, Phelps C. Os acromiale associated with rotator cuff impingement: MR imaging of the shoulder. Radiology. 1994;193:255–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Gumina S, De Santis P, Salvatore M, Postacchini F. Relationship between os acromilale and AC joint anatomical position. J Shoulder Elb Surg. 2003;12:6–8.CrossRefGoogle Scholar
  21. 21.
    Baechler M, Kim D. Uncoverage of the humeral head by anterolateral acromion and its relationship to full-thickness rotator cuff tears. Mil Med. 2006;171:1035–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Nyffeler R, Werner C, Sukthankar A, Schmid M, Gerber C. Association of large lateral extension of the acromion with rotator cuff tears. J Bone Joint Surg Am. 2006;88:800–5.PubMedGoogle Scholar
  23. 23.
    Torrens C, Lopez J, Puente I, Caceres E. The influence of the acromial coverage index in rotator cuff tears. J Shoulder Elb Surg. 2007;16:347–51.CrossRefGoogle Scholar
  24. 24.
    Pieper HG, Radas CB, Krahl H, Blank M. Anatomic variation of the coracoacromial ligament: a macroscopic and microscopic study of cadavers. J Shoulder Elb Surg. 1997;6:291–6.CrossRefGoogle Scholar
  25. 25.
    Kesmezacar H, Akgun I, Ogut T, Gokay S, Uzun I. The coracoacromial ligament: the morphology and relation to rotator cuff pathology. J Shoulder Elb Surg. 2008;17:182–8.CrossRefGoogle Scholar
  26. 26.
    Holt EM, Alibone RO. Anatomic variants of the coracoacromial ligament. J Shoulder Elb Surg. 1995;4:370–5.CrossRefGoogle Scholar
  27. 27.
    Kopuz C, Baris S, Yildirim M, Gülman B. Anatomic variations of the coracoacromial ligament in neonatal cadavers: a neonatal cadaver study. J Pediatr Orthop Part B. 2002;11:350–4.Google Scholar
  28. 28.
    Di Giacomo G, Pouliart N, Costantini A, De Vita A. Atlas of functional shoulder anatomy. Milan: Springer-Verlaged; 2008. p. 50.CrossRefGoogle Scholar
  29. 29.
    Fremery R, Bastian L, Siebert W. The coracoacromial ligament: anatomical and biomechanical properties with respect to age and rotator cuff disease. Knee Surg Sports Traumatol Arthrosc. 2000;8:309–13.CrossRefGoogle Scholar
  30. 30.
    Milz S, Jaob J, Büttner A, Tischer T, Putz R, Benjamin M. The structure of the coracoacromial ligament: fibrocartilage differentiation does not necessarily mean pathology. Scand J Med Sci Sports. 2008;18:16–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Morisawa Y. Morphological study of mechanoreceptors on the coracoacromial ligament. J Orthop Sci. 1998;3:102–10.PubMedCrossRefGoogle Scholar
  32. 32.
    Fealy S, April E, Khazzam M, Armengol-Barallat J, Bigliani L. The coracoacromial ligament: morphology and study of acromial enthesopathy. J Shoulder Elb Surg. 2005;14:542–8.CrossRefGoogle Scholar
  33. 33.
    Ogata S, Uhthoff HK. Acromial enthesopathy and rotator cuff tear: a radiologic and histologic post-mortem investigation of the coracoacromial arch. Clin Orthop. 1990;254:39–48.Google Scholar
  34. 34.
    Kijima H, Minagawa H, Saijo Y, Sano H, Tomioka T, Yamamoto N, Shimada Y, Okada K, Itoi E. Degenerated coracoacromial ligament in shoulders with rotator cuff tears shows higher elastic modulus: measurement with scanning acoustic microscopy. J Orthop Sci. 2009;14:62–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Sarkar K, Taine W, Uhthoff HK. The ultrastructure of the coracoacromial ligament in patients with chronic impingement syndrome. Clin Orthop. 1990;254:49–54.Google Scholar
  36. 36.
    Schiavone-Panni A, Milano G, Lucania L, Fabbriciani C, Logroscino CA. Histological analysis of the coracoacromial arch: correlation between age-related changes and rotator cuff tears. Arthroscopy. 1996;12:531–40.CrossRefGoogle Scholar
  37. 37.
    Tillmann B. Functional anatomy of the shoulder. Presented at the Fourth Congress of the European Society of Knee Surgery and Arthroscopy Stockholm 25–30 June, 1990.Google Scholar
  38. 38.
    Moorman CT, Deng XH, Warren RF. Role of the coracoacromial ligament in normal shoulder function. Presented at the American Academy of Orthopaedic Surgeons, 62nd Annual Meeting, 16–21 February 1995, Orlando, FL.Google Scholar
  39. 39.
    Lazarus MD, Ynung SW, Sidles JA. Anterosuperior humeral displacement: limitation by coracoacromial arch. Presented at the American Academy of Orthopaedic Surgeons, 62nd Annual Meeting, 16–21 February 1995, Orlando, FLGoogle Scholar
  40. 40.
    Fagelman M, Sartori M, Freedman KB, Patwardhan AG, Corandang G, Marra G. Biomechanics of coracoacromial arch modification. J Shoulder Elb Surg. 2007;16:101–6.CrossRefGoogle Scholar
  41. 41.
    Gumina S, Postacchini F, Orsina L, Cinotti G. The morphometry of the coracoid process – its aetiologic role in subcoracoid impingement syndrome. Int Orthop. 1999;23:198–201.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ferreira Neto A, Almeida A, Maiorino R, Zoppi Filho A, Benegas E. An anatomical study of the subcoracoid space. Clinics. 2006;61:467–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Richards D, Burckhart S, Campbell S. Relation between narrowed coracohumeral distance and subscapularis tears. Arthroscopy. 2005;21:1223–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Radas C, Pieper H. The coracoid impingement of the subscapularis tendon. A study of cadavers. J Shoulder Elbow Surg. 2004;13:154–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Schulz C, Anetzberger H, Glaser C. Coracoid tip position on frontal radiographs of the shoulder: a predictor of common shoulder pathologies. Br J Radiol. 2005;78:1005–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Gumina S. Il capo lungo del bicipite: anatomia ossea e del legamento trasverso. Atti del Congresso: Il capo lungo del bicipite. 2002, Abano Terme (PD). p. 36.Google Scholar
  47. 47.
    Clemente CD. Gray’s anatomy. 30th ed. Philadelphia: Lea & Febiger, 1984; 233–235., 370, 375, 512–528.Google Scholar
  48. 48.
    Mochizuki T, Sugaya H, Uomizu M, Maeda K, Matsuki K, Sekiya I, Muneta T, Akita K. Humeral insertion of supraspinatus and infraspinatus. New anatomical findings regarding the footprint of the rotator cuff. J Bone Joint Surg. 2008;90:962–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Albritton MJ, Graham RD, Richards RS 2nd, Basamania CJ. An anatomic study of the effects on the suprascapular nerve due to retraction of the supraspinatus muscle after a rotator cuff tears. J Shoulder Elb Surg. 2003;12:497–500.CrossRefGoogle Scholar
  50. 50.
    Minagawa H, Itoi E, Konno N, Kido T, Sano A, Urayama M, Sato K. Humeral attachment of the supraspinatus and infraspinatus tendons: an anatomic study. Arthroscopy. 1998;14:302–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Dugas JR, Campbell DA, Warren RF, Robie BH, Millet PJ. Anatomy and dimensions of rotator cuff insertions. J Shoulder Elb Surg. 2002;11:498–503.CrossRefGoogle Scholar
  52. 52.
    Curtis AS, Burbank KM, Tierney JJ, Scheller AD, Curran AR. The insertional footprint of the rotator cuff: an anatomic study. Arthroscopy. 2006;22:603–9.CrossRefGoogle Scholar
  53. 53.
    Itoi E, Berglund LJ, Grabowski JJ, Schultz FM, Growney ES, Morrey BF, An KN. Tensile properties of the supraspinatus tendon. J Orthop Res. 1995;13:578–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Itoi E, Berglund LJ, Grabowski JJ. Tensile properties of the supraspinatus tendon. J Musculoskelet Res. 2004;8:29–34.CrossRefGoogle Scholar
  55. 55.
    Sano H, Ishii H, Yeadon A, Backman DS, Brunet JA, Uhthoff HK. Degeneration at the insertion weakens the tensile strength of the supraspinatus tendon: a comparative mechanical and histologic study of the bone-tendon complex. J Orthop Res. 1997;15:719–26.PubMedCrossRefGoogle Scholar
  56. 56.
    Uhthoff HK, Sano H. Pathology of failure of the rotator cuff tendon. Orthop Clin North Am. 1997;28:31–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Cooper DE, O’Brien S, Warren R. Supporting layers of the Gleno-humeral joint: an anatomic study. Clin Orthop. 1993;289:144–59.Google Scholar
  58. 58.
    Nakajima T, Rokuuma N, Hamada K. Histologic and biomechanical characteristics of the supraspinatus tendon: reference to rotator cuff tearing. J Shoulder Elb Surg. 1994;3:79–87.CrossRefGoogle Scholar
  59. 59.
    Fallon J, Blevins FT, Vogel K, Trotter J. Functional morphology of the supraspinatus tendon. J Orthop Res. 2002;20:920–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Clark JM, Harryman DT. Tendons, ligament and capsule of the rotator cuff. Gross and microscopic anatomy. J Bone Joint Surg. 1992;74-A:713–25.CrossRefGoogle Scholar
  61. 61.
    Burkhart SS. Arthroscopic treatment of massive rotator cuff tears: clinical results and biomechanical rationale. Clin Orthop. 1991;267:45–56.Google Scholar
  62. 62.
    Cooper DE, Arnoczky SP, O’Brien SJ. Histology and vascularity of the glenoid-labrum- an anatomic study. J Bone Joint Surg. 1992;74-A:46–52.CrossRefGoogle Scholar
  63. 63.
    Pearsall AW, Holovacs TF, Speer KP. The intra-articular component of the subscapularis tendon: an anatomic and histological correlation in reference to surgical release in patients with frozen shoulder syndrome. Arthroscopy. 2000;16:236–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Matsen FA, Arntz CT, Lippitt SB. La cuffia dei rotatori. In: Rockwood CA, Matsen FA, editors. La spalla. Roma: Verduci; 2000. p. 733–821.Google Scholar
  65. 65.
    Colachis SC Jr, Strohm BR, Brecher VL. Effects of axillary nerve block on muscle force in the upper extremity. Arch Phys Med Rehabil. 1969;50:645–7.Google Scholar
  66. 66.
    Howell SM, Imobersteg AM, Seger DH, Marone PJ. Clarification of the role of the supraspinatus muscle in the shoulder function. J Bone Joint Surg. 1986;68-A:398–404.CrossRefGoogle Scholar
  67. 67.
    Salmon M. Anatomic studies: arteries of the muscles of the extremities and the trunk and arterial anastomotic pathways of the extremities. St Louis: Quality Medical Publishing Inc.; 1994. p. 11–7.Google Scholar
  68. 68.
    Cain PR, Mutschler TA, Fu FH, Lee SK. Anterior stability of the glenohumeral joint. A dynamic model. Am J Sports Med. 1987;15:144–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Bartlett SP, May JW, Yaremchuk MJ. The latissimus dorsi muscle: a fresh cadaver study of the primary neurovascular pedicle. Plast Reconstr Surg. 1981;65:631–6.CrossRefGoogle Scholar
  70. 70.
    Huelke DF. Variation in the origins of the branches of the axillary artery. Anat Rec. 1959;132:233.CrossRefGoogle Scholar
  71. 71.
    Oversen JO, Nielsen S. Stability of the shoulder joint. Cadaver study of stabilizing structure. Acta Orthop Scand. 1985;56:149–51.CrossRefGoogle Scholar
  72. 72.
    Symeonides PP. The significance of the subscapularis muscle in the pathogenesis of recurrent anterior dislocation of the shoulder. J Bone Joint Surg. 1972;54-B:476–83.CrossRefGoogle Scholar
  73. 73.
    Halder A, Zobitz ME, Schultz E, An KN. Structural properties of the subscapolaris tendon. J Orthop Res. 2000;18:829–34.PubMedCrossRefGoogle Scholar
  74. 74.
    Alpert SW, Pink MM, Jobe FW, McMahon PJ, Mathiyakom W. Electromyographic analysis of deltoid and rotator cuff function under varying loads and speeds. J Shoulder Elb Surg. 2000;9:47–58.CrossRefGoogle Scholar
  75. 75.
    Motzkin NE, Itoi E, Morrey BF. Contribution of passive bulk tissues and deltoid to static inferior glenohumeral stability. J Shoulder Elb Surg. 1994;3:313–9.CrossRefGoogle Scholar
  76. 76.
    Markhede G, Monastyrski J, Stener B. Shoulder function after deltoid muscle removal. Acta Orthop Scand. 1985;56:242–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Kido T, Itoi E, Lee SB, Neale PG, An KN. Dynamic stabilizing function of the deltoid muscle in shoulders with anterior instability. Am J Sports Med. 2003;31:399–403.PubMedCrossRefGoogle Scholar
  78. 78.
    Morrey B, Itoi E, An K. Biomechanics of the shoulder. In: Rockwood Jr C, Matsen III FA, editors. The shoulder. 2nd ed. Philadelphia: Saunders; 1998. p. 890–6.Google Scholar
  79. 79.
    Jobe CM. Gross anatomy of the shoulder. In: Rockwood CA, Matsen FA, editors. The shoulder. Philadelphia: WB Saunders; 1990. p. 34–97.Google Scholar
  80. 80.
    Habermeyer P, Kaiser E, Knappe M, Kreusser T, Wiedemann E. Functional anatomy and biomechanics of the long biceps tendon. Unfallchirurg. 1987;90:319–29.PubMedGoogle Scholar
  81. 81.
    Vangsness CT, Jorgenson SS, Watson T, Johnson DL. The origin of the long head of the biceps from the scapula and glenoid labrum. J Bone Joint Surg Br. 1994;76:951–3.PubMedCrossRefGoogle Scholar
  82. 82.
    Van Holsbeek M, Introcaso JH. Musculoskeletal ultrasound. 1st ed. St. Louis: Mosby-Year Book; 1991. p. 265–84. 316Google Scholar
  83. 83.
    Refior HJ, Sowa D. Long tendon of the biceps brachii: sites of predilection for degenerative lesions. J Shoulder Elb Surg. 1995;4:436–40.CrossRefGoogle Scholar
  84. 84.
    MacDonald K, Bridger J, Cash C, Parkin L. Transverse humeral ligament: does it exist? Clin Anat. 2007;20:663–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Arai R, Mochiziki T, Yamaguchi K, Sugaya H, Kobayashi M, Nakamura T, Akita K. Functional anatomy of the superior glenohumeral and coracohumeral ligaments and the subscapularis tendon in view of stabilization of the long head of the biceps tendon. J Shoulder Elb Surg. 2010;19:58–64.CrossRefGoogle Scholar
  86. 86.
    Gumina S, Carbone S, Perugia D, Perugia L, Postacchini F. Rupture of the long head biceps tendon treated with tenodesis to the coracoid process. Results at more than 30 years. Int Orthop. 2011;35:713–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Fealy S, Rodeo SA, DiCarlo EF, O’Brien SJ. The developmental anatomy of the neonatal glenohumeral joint. J Shoulder Elb Surg. 2000;9:217–22.CrossRefGoogle Scholar
  88. 88.
    Gohlke F, Essigkurg B, Schmitz F. The pattern of collagen fiber bundles of the capsule of the glenohumeral joint. J Shoulder Elb Surg. 1994;3:111–27.CrossRefGoogle Scholar
  89. 89.
    Abe S, Nakamura T, Rodriguez-Vazquez JF, Murakami G, Ide Y. Early fetal development of the rotator interval region of the shoulder with special reference to topographical relationships among related tendons and ligaments. Surg Radiol Anat. 2011;33:609–15.PubMedCrossRefGoogle Scholar
  90. 90.
    Jost B, Koch PP, Gerber C. Anatomy and functional aspects of the rotator interval. J Shoulder Elb Surg. 2000;9:336–41.CrossRefGoogle Scholar
  91. 91.
    Neer CS 2nd, Satterlee CC, Dalsey RM, Flatow EL. The anatomy and potential effects of contracture of the coracohumeral ligament. Clin Orthop. 1992;280:182–5.Google Scholar
  92. 92.
    Kolts I, Busch LC, Tomusk H, Raudheiding A, Eller A, Merila M, Russlies M, Pääsuke M, Leibecke T, Kühnel W. Macroscopical anatomy of the so called “rotator interval”. A cadaver study on 19 shoulder joints. Ann Anat. 2002;184:9–14.PubMedCrossRefGoogle Scholar
  93. 93.
    Testut L. In: Anatomia Umana, vol I. Torinese; 1942. p. 301.Google Scholar
  94. 94.
    Pearl ML, Volk AG. Retroversion of the proximal humerus in relationship to prosthetic replacement arthroplasty. J Shoulder Elb Surg. 1995;4:286–9.CrossRefGoogle Scholar
  95. 95.
    Rengachary SS, Burr D, Lucas S. Soprascapular entrapment neuropathy: a clinical, anatomical and comparative study. Part. 2: anatomical study. Neurosurgery. 1979;5:446–51.Google Scholar
  96. 96.
    Rengachary SS, Burr D, Lucas S, Brackett CE. Soprascapular entrapment neuropathy: a clinical, anatomical and comparative study. Part. 3: comparative study. Neurosurgery. 1979;5:452–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Rengachary SS, Neff JP, Singer PA, Brackett CE. Soprascapular entrapment neuropathy: a clinical, anatomical and comparative study. Part. 1: Clinical study. Neurosurgery. 1979;5:441–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Rothman RH, Marvel JP, Heppenstal RB. Anatomic considerations in the glenohumeral joint. Orthop Clin North Am. 1975;6:341–52.PubMedGoogle Scholar
  99. 99.
    Das SP, Ray GS, Saha AK. Observations on the tilt of the glenoid cavity of the scapula. J Anat Soc India. 1966;15:114–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefano Gumina
    • 1
  • Vittorio Candela
    • 2
  • Giovanni Ziveri
    • 3
  • Carlo Felice De Biase
    • 3
  1. 1.Department of Orthopaedics and TraumatologySapienza University of RomeRomeItaly
  2. 2.Department of Anatomy, Histology, Legal Medicine and OrthopedicsSapienza, University of Rome—Istituto Chirurgico Ortopedico Traumatologico (ICOT)LatinaItaly
  3. 3.Shoulder and Elbow Surgery UnitHumanitas Clinic, RozzanoMilanItaly

Personalised recommendations