Advertisement

What Do the Companies Propose?

  • Celeste Bertone
  • Dario Petriccioli
Chapter

Abstract

The pioneering work of Paul Grammont, in 1985, and the development of the Delta prosthesis have been fundamental to all subsequent reverse shoulder arthroplasty systems. Reverse shoulder arthroplasty has emerged as the standard treatment for patients with rotator cuff tear arthropathy, and its use is expanding to include other difficult shoulder problems. However, its application must be tempered by appropriate patient and implant selection in order to minimize the potential for associated complications. In the current year (2017), more than 30 models of commercial designs are presently available on the market. This chapter describes all the different design parameters that exist so far and their alterations according to the first Delta prosthesis. Prosthetic differences are found for the baseplate, glenosphere, polyethylene, and humeral components. These prosthetic differences, manufactured in order to limit the rate of all complications reported in early designs, need to be carefully analyzed knowing that a gain in one mechanical parameter can balance the loss of another. Patient-specific implants based on accurate preoperative morphological measurements may help in the future.

Keywords

Reversed shoulder arthroplasty Prosthetic design Biomechanic parameters Baseplate Glenosphere Polyethylene insert Humeral stem 

References

  1. 1.
    Grammont P, Trouilloud P, Laffay JP, Deries X. Etude et realisation d’une nouvelle prothese d’epaule. Rhumatologie. 1987;39(10):407–18.Google Scholar
  2. 2.
    Buechel FF, Pappas MJ, DePalma AF. “Floating-socket” total shoulder replacement: anatomical, biomechanical, and surgical rationale. J Biomed Mater Res. 1978;12(1):89–114.CrossRefGoogle Scholar
  3. 3.
    Fenlin JM Jr. Total glenohumeral joint replacement. Orthop Clin North Am. 1975;6(2):565–83.PubMedGoogle Scholar
  4. 4.
    Reeves B, Jobbins B, Flowers F, Dowson D, Wright V. Some problems in the development of a total shoulder endo-prosthesis. Ann Rheum Dis. 1972;31(5):425–6.CrossRefGoogle Scholar
  5. 5.
    Laurence M. Replacement arthroplasty of the rotator cuff deficient shoulder. J Bone Joint Surg Br. 1991;73(6):916–9.CrossRefGoogle Scholar
  6. 6.
    Kessel L, Bayley I. Prosthetic replacement of shoulder joint: preliminary communication. J R Soc Med. 1979;72(10):748–52.CrossRefGoogle Scholar
  7. 7.
    Ahir SP, Walker PS, Squire-Taylor CJ, Blunn GW, Bayley JI. Analysis of glenoid fixation for a reversed anatomy fixed-fulcrum shoulder replacement. J Biomech. 2004;37(11):1699–708.CrossRefGoogle Scholar
  8. 8.
    Grammont PM, Baulot E. The classic: Delta shoulder prosthesis for rotator cuff rupture. 1993. Clin Orthop Relat Res. 2011;469(9):2424.  https://doi.org/10.1007/s11999-011-1960-5.CrossRefPubMedGoogle Scholar
  9. 9.
    Boileau P, Watkinson DJ, Hatzidakis AM, Balg F. Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elb Surg. 2005;14(1 Suppl S):147S–61S.CrossRefGoogle Scholar
  10. 10.
    Roche C, Flurin PH, Wright T, Crosby LA, Mauldin M, Zuckerman JD. An evaluation of the relationships between reverse shoulder design parameters and range of motion, impingement, and stability. J Shoulder Elb Surg. 2009;18(5):734–41.  https://doi.org/10.1016/j.jse.2008.12.008.
  11. 11.
    Boileau P, Watkinson D, Hatzidakis AM, Hovorka I. Neer award 2005: the Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J Shoulder Elb Surg. 2005;15(5):527–40.CrossRefGoogle Scholar
  12. 12.
    Sirveaux F, Favard L, Oudet D, Huquet D, Walch G, Molé D. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J Bone Joint Surg Br. 2004;86(3):388–95.CrossRefGoogle Scholar
  13. 13.
    Guery J, Favard L, Sirveaux F, Oudet D, Molé D, Walch G. Reverse total shoulder arthroplasty. Survivorship analysis of eighty replacements followed for five to ten years. J Bone Joint Surg Am. 2006;88(8):1742–7.CrossRefGoogle Scholar
  14. 14.
    Zumstein MA, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elb Surg. 2011;20(1):146–57.  https://doi.org/10.1016/j.jse.2010.08.001.CrossRefGoogle Scholar
  15. 15.
    Middernacht B, Van Tongel A, De Wilde L. A critical review on prosthetic features available for reversed total shoulder arthroplasty. Biomed Res Int. 2016;2016:3256931.  https://doi.org/10.1155/2016/3256931.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sachinis NP, Athanasiadou P. Current designs and trends in reverse shoulder arthroplasty. OA Orthopaedics. 2013;1(3):24–31.CrossRefGoogle Scholar
  17. 17.
    Frankle MA, Teramoto A, Luo ZP, Levy JC, Pupello D. Glenoid morphology in reverse shoulder arthroplasty: classification and surgical implications. J Shoulder Elb Surg. 2009;18(6):874–85.  https://doi.org/10.1016/j.jse.2009.02.013.CrossRefGoogle Scholar
  18. 18.
    Chae SW, Kim SY, Lee H, Yon JR, Lee J, Han SH. Effect of baseplate size on primary glenoid stability and impingement-free range of motion in reverse shoulder arthroplasty. BMC Musculoskelet Disord. 2014;15:417.  https://doi.org/10.1186/1471-2474-15-417.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Athwal S, Faber KJ. Outcomes of reverse shoulder arthroplasty using a mini 25-mm glenoid baseplate. Int Orthop. 2016;40(1):109–13.  https://doi.org/10.1007/s00264-015-2945-x.CrossRefPubMedGoogle Scholar
  20. 20.
    Roche CP, Stroud NJ, Flurin PH, Wright TW, Zuckerman JD, DiPaola MJ. Reverse shoulder glenoid baseplate fixation: a comparison of flat-back versus curved-back designs and oval versus circular designs with 2 different offset glenospheres. J Shoulder Elb Surg. 2014;23(9):1388–94.  https://doi.org/10.1016/j.jse.2014.01.050.CrossRefGoogle Scholar
  21. 21.
    Middernacht B, De Roo PJ, Van Maele G, De Wilde LF. Consequences of scapular anatomy for reversed total shoulder arthroplasty. Clin Orthop Relat Res. 2008;466(6):1410–8.  https://doi.org/10.1007/s11999-008-0187-6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Middernacht B, De Wilde L, Molé L, Favard L, Debeer P. Glenosphere disengagement: a potentially serious default in reverse shoulder surgery. Clin Orthop Relat Res. 2008;466(4):892–8.  https://doi.org/10.1007/s11999-007-0090-6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Trouilloud P, Gonzalvez M, Martz P, Charles H, Handelberg F, Nyffeler RW, Baulot E, Duocentric® Group. Duocentric reversed shoulder prosthesis and personal fit templates: innovative strategies to optimize prosthesis positioning and prevent scapular notching. Eur J Orthop Surg Traumatol. 2014;24(4):483–95.  https://doi.org/10.1007/s00590-013-1213-2.
  24. 24.
    Checroun AJ, Hawkins C, Kummer FJ, Zuckerman JD. Fit of current glenoid component designs: an anatomic cadaver study. J Shoulder Elb Surg. 2002;11(6):614–7.  https://doi.org/10.1067/mse.2002.126099.CrossRefGoogle Scholar
  25. 25.
    Szabo I, Buscayret F, Edwards TB, Nemoz C, Boileau P, Walch G. Radiographic comparison of flat-back and convex-back glenoid components in total shoulder arthroplasty. J Shoulder Elb Surg. 2005;14(6):636–42.  https://doi.org/10.1016/j.jse.2005.05.004.CrossRefGoogle Scholar
  26. 26.
    Karelse A, Leuridan S, Van Tongel A, Piepers IM, Debeer P, De Wilde LF. A glenoid reaming study: how accurate are current reaming techniques? J Shoulder Elb Surg. 2014;23(8):1120–7.  https://doi.org/10.1016/j.jse.2013.11.023.CrossRefGoogle Scholar
  27. 27.
    Walch G, Badet R, Boulahia A, Khoury A. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplast. 1999;14(6):756–60.CrossRefGoogle Scholar
  28. 28.
    Bercik MJ, Kruse K 2nd, Yalizis M, Gauci MO, Chaoui J, Walch G. A modification to the Walch classification of the glenoid in primary glenohumeral osteoarthritis using three-dimensional imaging. J Shoulder Elb Surg. 2016;25(10):1601–6.  https://doi.org/10.1016/j.jse.2016.03.010.CrossRefGoogle Scholar
  29. 29.
    Sutton LG, Werner FW, Jones AK, Close CA, Nanavati VN. Optimization of glenoid fixation in reverse shoulder arthroplasty using 3-dimensional modeling. J Shoulder Elb Surg. 2010;19(5):664–9.  https://doi.org/10.1016/j.jse.2009.12.003.CrossRefGoogle Scholar
  30. 30.
    Parsons BO, Gruson KI, Accousti KJ, Klug RA, Flatow EL. Optimal rotation and screw positioning for initial glenosphere baseplate fixation in reverse shoulder arthroplasty. J Shoulder Elb Surg. 2009;18(6):886–91.  https://doi.org/10.1016/j.jse.2008.11.002.CrossRefGoogle Scholar
  31. 31.
    James J, Allison MA, Werner FW, McBride DE, Basu NN, Sutton LG, Nanavati VN. Reverse shoulder arthroplasty glenoid fixation: is there a benefit in using four instead of two screws? J Shoulder Elb Surg. 2013;22(8):1030–6.  https://doi.org/10.1016/j.jse.2012.11.006.CrossRefGoogle Scholar
  32. 32.
    Königshausen M, Jettkant B, Sverdlova N, Ehlert C, Gessmann J, Schildhauer TA, Seybold D. Influence of different peg length in glenoid bone loss: a biomechanical analysis regarding primary stability of the glenoid baseplate in reverse shoulder arthroplasty. Technol Health Care. 2015;23(6):855–69.  https://doi.org/10.3233/THC-151031.CrossRefPubMedGoogle Scholar
  33. 33.
    Frankle M, Siegal S, Pupello D, Saleem A, Mighell M, Vasey M. The reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency: a minimum two-year follow-up study of sixty patients. J Bone Joint Surg Am. 2005;87(8):1697–705.PubMedGoogle Scholar
  34. 34.
    Streit JJ, Shishani Y, Gobezie R. Medialized versus lateralized center of rotation in reverse shoulder arthroplasty. Orthopedics. 2015;38(12):e1098–103.  https://doi.org/10.3928/01477447-20151120-06.CrossRefPubMedGoogle Scholar
  35. 35.
    Valenti P, Sauzières P, Katz D, Kalouche I, Kilinc AS. Do less medialized reverse shoulder prostheses increase motion and reduce notching? Clin Orthop Relat Res. 2011;469(9):2550–7.  https://doi.org/10.1007/s11999-011-1844-8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gutiérrez S, Walker M, Willis M, Pupello DR, Frankle MA. Effects of tilt and glenosphere eccentricity on baseplate/bone interface forces in a computational model, validated by a mechanical model, of reverse shoulder arthroplasty. J Shoulder Elb Surg. 2011;20(5):732–9.  https://doi.org/10.1016/j.jse.2010.10.035.CrossRefGoogle Scholar
  37. 37.
    Nerot C, Ohl X. Primary shoulder reverse arthroplasty: surgical technique. Orthop Traumatol Surg Res. 2014;100(1 Suppl):S181–90.  https://doi.org/10.1016/j.otsr.2013.06.011.CrossRefPubMedGoogle Scholar
  38. 38.
    Gilot GJ. Addressing glenoid erosion in reverse total shoulder arthroplasty. Bull Hosp Jt Dis (2013). 2013;71(Suppl 2):S51–3. Review.Google Scholar
  39. 39.
    Lévigne C, Boileau P, Favard L, Garaud P, Molé D, Sirveaux F, Walch G. Scapular notching in reverse shoulder arthroplasty. J Shoulder Elb Surg. 2008;17(6):925–35.  https://doi.org/10.1016/j.jse.2008.02.010.CrossRefGoogle Scholar
  40. 40.
    Greiner S, Schmidt C, König C, Perka C, Herrmann S. Lateralized reverse shoulder arthroplasty maintains rotational function of the remaining rotator cuff. Clin Orthop Relat Res. 2013;471(3):940–6.  https://doi.org/10.1007/s11999-012-2692-x.CrossRefPubMedGoogle Scholar
  41. 41.
    Giles JW, Langohr GD, Johnson JA, Athwal GS. Implant design variations in reverse total shoulder arthroplasty influence the required deltoid force and resultant joint load. Clin Orthop Relat Res. 2015;473(11):3615–26.  https://doi.org/10.1007/s11999-015-4526-0.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hoenecke HR Jr, Flores-Hernandez C, D’Lima DD. Reverse total shoulder arthroplasty component center of rotation affects muscle function. J Shoulder Elb Surg. 2014;23(8):1128–35.  https://doi.org/10.1016/j.jse.2013.11.025.CrossRefGoogle Scholar
  43. 43.
    Werner BS, Chaoui J, Walch G. The influence of humeral neck shaft angle and glenoid lateralization on range of motion in reverse shoulder arthroplasty. J Shoulder Elb Surg. 2017;26(10):1726–31.  https://doi.org/10.1016/j.jse.2017.03.032.CrossRefGoogle Scholar
  44. 44.
    Lawrence C, Williams GR, Namdari S. Influence of glenosphere design on outcomes and complications of reverse arthroplasty: a systematic review. Clin Orthop Surg. 2016;8(3):288–97.  https://doi.org/10.4055/cios.2016.8.3.288.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Poon PC, Chou J, Young SW, Astley T. A comparison of concentric and eccentric glenospheres in reverse shoulder arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2014;96(16):e138.  https://doi.org/10.2106/JBJS.M.00941.CrossRefPubMedGoogle Scholar
  46. 46.
    Chou J, Malak SF, Anderson IA, Astley T, Poon PC. Biomechanical evaluation of different designs of glenospheres in the SMR reverse total shoulder prosthesis: range of motion and risk of scapular notching. J Shoulder Elb Surg. 2009;18(3):354–9.  https://doi.org/10.1016/j.jse.2009.01.015.CrossRefGoogle Scholar
  47. 47.
    Yang CC, Lu CL, Wu CH, Wu JJ, Huang TL, Chen R, Yeh MK. Stress analysis of glenoid component in design of reverse shoulder prosthesis using finite element method. J Shoulder Elb Surg. 2013;22(7):932–9.  https://doi.org/10.1016/j.jse.2012.09.001.CrossRefGoogle Scholar
  48. 48.
    Lädermann A, Lubbeke A, Melis B, Stern R, Christofilopoulos P, Bacle G, Walch G. Prevalence of neurologic lesions after total shoulder arthroplasty. J Bone Joint Surg Am. 2011;93(14):1288–93.  https://doi.org/10.2106/JBJS.J.00369.CrossRefPubMedGoogle Scholar
  49. 49.
    Lädermann A, Stimec BV, Denard PJ, Cunningham G, Collin P, Fasel JH. Injury to the axillary nerve after reverse shoulder arthroplasty: an anatomical study. Orthop Traumatol Surg Res. 2014;100(1):105–8.  https://doi.org/10.1016/j.otsr.2013.09.006.CrossRefPubMedGoogle Scholar
  50. 50.
    Berhouet J, Garaud P, Favard L. Evaluation of the role of glenosphere design and humeral component retroversion in avoiding scapular notching during reverse shoulder arthroplasty. J Shoulder Elb Surg. 2014;23(2):151–8.  https://doi.org/10.1016/j.jse.2013.05.009.CrossRefGoogle Scholar
  51. 51.
    Langohr GD, Giles JW, Athwal GS, Johnson JA. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion. J Shoulder Elb Surg. 2015;24(6):972–9.  https://doi.org/10.1016/j.jse.2014.10.018.CrossRefGoogle Scholar
  52. 52.
    Müller AM, Born M, Jung C, Flury M, Kolling C, Schwyzer HK, Audigé L. Glenosphere size in reverse shoulder arthroplasty: is larger better for external rotation and abduction strength? J Shoulder Elb Surg. 2018;27:44–52.  https://doi.org/10.1016/j.jse.2017.06.002. [Epub ahead of print].CrossRefGoogle Scholar
  53. 53.
    Gerber C, Pennington SD, Nyffeler RW. Reverse total shoulder arthroplasty. J Am Acad Orthop Surg. 2009;17(5):284–95.CrossRefGoogle Scholar
  54. 54.
    Lévigne C, Garret J, Boileau P, Alami G, Favard L, Walch G. Scapular notching in reverse shoulder arthroplasty: is it important to avoid it and how? Clin Orthop Relat Res. 2011;469(9):2512–20.  https://doi.org/10.1007/s11999-010-1695-8.CrossRefPubMedGoogle Scholar
  55. 55.
    Nyffeler RW, Werner CM, Gerber C. Biomechanical relevance of glenoid component positioning in the reverse Delta III total shoulder prosthesis. J Shoulder Elb Surg. 2005;14(5):524–8.CrossRefGoogle Scholar
  56. 56.
    Gutiérrez S, Levy JC, Frankle MA, Cuff D, Keller TS, Pupello DR, Lee WE 3rd. Evaluation of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder model. J Shoulder Elb Surg. 2008;17(4):608–15.  https://doi.org/10.1016/j.jse.2007.11.010.CrossRefGoogle Scholar
  57. 57.
    Simovitch RW, Zumstein MA, Lohri E, Helmy N, Gerber C. Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement. J Bone Joint Surg Am. 2007;89(3):588–600.CrossRefGoogle Scholar
  58. 58.
    Fuller CB, Gregorius SF, Lim EK. Glenosphere disengagement in a reverse total shoulder arthroplasty with a non-Morse taper design. Int Orthop. 2015;39(2):305–8.  https://doi.org/10.1007/s00264-014-2653-y.CrossRefPubMedGoogle Scholar
  59. 59.
    Vaupel ZM, Baker KC, Kurdziel MD, Wiater JM. Wear simulation of reverse total shoulder arthroplasty systems: effect of glenosphere design. J Shoulder Elb Surg. 2012;21(10):1422–9.  https://doi.org/10.1016/j.jse.2011.10.024.CrossRefGoogle Scholar
  60. 60.
    Kohut G, Dallmann F, Irlenbusch U. Wear-induced loss of mass in reversed total shoulder arthroplasty with conventional and inverted bearing materials. J Biomech. 2012;45(3):469–73.  https://doi.org/10.1016/j.jbiomech.2011.11.055.CrossRefPubMedGoogle Scholar
  61. 61.
    Irlenbusch U, Kääb MJ, Kohut G, Proust J, Reuther F, Joudet T. Reversed shoulder arthroplasty with inversed bearing materials: 2-year clinical and radiographic results in 101 patients. Arch Orthop Trauma Surg. 2015;135(2):161–9.  https://doi.org/10.1007/s00402-014-2135-0.CrossRefPubMedGoogle Scholar
  62. 62.
    Ackland DC, Patel M, Knox D. Prosthesis design and placement in reverse total shoulder arthroplasty. J Orthop Surg Res. 2015;10:101.  https://doi.org/10.1186/s13018-015-0244-2.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gutiérrez S, Luo ZP, Levy J, Frankle MA. Arc of motion and socket depth in reverse shoulder implants. Clin Biomech (Bristol, Avon). 2009;24(6):473–9.  https://doi.org/10.1016/j.clinbiomech.2009.02.008.CrossRefGoogle Scholar
  64. 64.
    De Wilde LF, Poncet D, Middernacht B, Ekelund A. Prosthetic overhang is the most effective way to prevent scapular conflict in a reverse total shoulder prosthesis. Acta Orthop. 2010;81(6):719–26.  https://doi.org/10.3109/17453674.2010.538354.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gutiérrez S, Keller TS, Levy JC, Lee WE 3rd, Luo ZP. Hierarchy of stability factors in reverse shoulder arthroplasty. Clin Orthop Relat Res. 2008;466(3):670–6.  https://doi.org/10.1007/s11999-007-0096-0.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Gutiérrez S, Comiskey CA 4th, Luo ZP, Pupello DR, Frankle MA. Range of impingement-free abduction and adduction deficit after reverse shoulder arthroplasty. Hierarchy of surgical and implant-design-related factors. J Bone Joint Surg Am. 2008;90(12):2606–15.  https://doi.org/10.2106/JBJS.H.00012.CrossRefPubMedGoogle Scholar
  67. 67.
    Day JS, MacDonald DW, Olsen M, Getz C, Williams GR, Kurtz SM. Polyethylene wear in retrieved reverse total shoulder components. J Shoulder Elb Surg. 2012;21(5):667–74.  https://doi.org/10.1016/j.jse.2011.03.012.CrossRefGoogle Scholar
  68. 68.
    Lädermann A, Gueorguiev B, Charbonnier C, Stimec BV, Fasel JH, Zderic I, Hagen J, Walch G. Scapular notching on kinematic simulated range of motion after reverse shoulder arthroplasty is not the result of impingement in adduction. Medicine (Baltimore). 2015;94(38):e1615.  https://doi.org/10.1097/MD.0000000000001615.
  69. 69.
    Keener JD, Chalmers PN, Yamaguchi K. The humeral implant in shoulder arthroplasty. J Am Acad Orthop Surg. 2017;25(6):427–38.  https://doi.org/10.5435/JAAOS-D-15-00682.CrossRefPubMedGoogle Scholar
  70. 70.
    Jeon BK, Panchal KA, Ji JH, Xin YZ, Park SR, Kim JH, Yang SJ. Combined effect of change in humeral neck-shaft angle and retroversion on shoulder range of motion in reverse total shoulder arthroplasty—a simulation study. Clin Biomech (Bristol, Avon). 2016;31:12–9.  https://doi.org/10.1016/j.clinbiomech.2015.06.022.CrossRefGoogle Scholar
  71. 71.
    Lädermann A, Denard PJ, Boileau P, Farron A, Deransart P, Terrier A, Ston J, Walch G. Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty. Int Orthop. 2015;39(11):2205–13.  https://doi.org/10.1007/s00264-015-2984-3.CrossRefPubMedGoogle Scholar
  72. 72.
    Oh JH, Shin SJ, McGarry MH, Scott JH, Heckmann N, Lee TQ. Biomechanical effects of humeral neck-shaft angle and subscapularis integrity in reverse total shoulder arthroplasty. J Shoulder Elb Surg. 2014;23(8):1091–8.  https://doi.org/10.1016/j.jse.2013.11.003.
  73. 73.
    Wright TW. Revision of humeral components in shoulder arthroplasty. Bull Hosp Jt Dis (2013). 2013;71(Suppl 2):77–81.Google Scholar
  74. 74.
    Wieser K, Borbas P, Ek ET, Meyer DC, Gerber C. Conversion of stemmed hemi- or total to reverse total shoulder arthroplasty: advantages of a modular stem design. Clin Orthop Relat Res. 2015;473(2):651–60.  https://doi.org/10.1007/s11999-014-3985-z.CrossRefPubMedGoogle Scholar
  75. 75.
    Werner BC, Dines JS, Dines DM. Platform systems in shoulder arthroplasty. Curr Rev Musculoskelet Med. 2016;9(1):49–53.  https://doi.org/10.1007/s12178-016-9317-z.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Crosby LA, Wright TW, Yu S, Zuckerman JD. Conversion to reverse total shoulder arthroplasty with and without humeral stem retention: the role of a convertible-platform stem. J Bone Joint Surg Am. 2017;99(9):736–42.  https://doi.org/10.2106/JBJS.16.00683.CrossRefPubMedGoogle Scholar
  77. 77.
    Kirsch JM, Khan M, Thornley P, Gichuru M, Freehill MT, Neviaser A, Moravek J, Miller BS, Bedi A. Platform shoulder arthroplasty: a systematic review. J Shoulder Elb Surg. 2018;27:756–63.  https://doi.org/10.1016/j.jse.2017.08.020. [Epub ahead of print].CrossRefGoogle Scholar
  78. 78.
    Edwards TB, Morris BJ, Hodorek B. Tornier Aequalis Ascend™ Flex Convertible Shoulder System. In: Frankle M, et al., editors. Reverse shoulder arthroplasty. Cham: Springer International Publishing; 2016. p. 441–8.  https://doi.org/10.1007/978-3-319-20840-4_44.CrossRefGoogle Scholar
  79. 79.
    Kadum B, Mafi N, Norberg S, Sayed-Noor AS. Results of the total evolutive shoulder system (TESS): a single-centre study of 56 consecutive patients. Arch Orthop Trauma Surg. 2011;131(12):1623–9.  https://doi.org/10.1007/s00402-011-1368-4.CrossRefPubMedGoogle Scholar
  80. 80.
    Giuseffi SA, Streubel P, Sperling J, Sanchez-Sotelo J. Short-stem uncemented primary reverse shoulder arthroplasty: clinical and radiological outcomes. Bone Joint J. 2014;96-B(4):526–9.  https://doi.org/10.1302/0301-620X.96B3.32702.CrossRefPubMedGoogle Scholar
  81. 81.
    Atoun E, Van Tongel A, Hous N, Narvani A, Relwani J, Abraham R, Levy O. Reverse shoulder arthroplasty with a short metaphyseal humeral stem. Int Orthop. 2014;38(6):1213–8.  https://doi.org/10.1007/s00264-014-2328-8.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Levy O, Narvani A, Hous N, Abraham R, Relwani J, Pradhan R, Bruguera J, Sforza G, Atoun E. Reverse shoulder arthroplasty with a cementless short metaphyseal humeral implant without a stem: clinical and radiologic outcomes in prospective 2- to 7-year follow-up study. J Shoulder Elb Surg. 2016;25(8):1362–70.  https://doi.org/10.1016/j.jse.2015.12.017.CrossRefGoogle Scholar
  83. 83.
    Moroder P, Ernstbrunner L, Zweiger C, Schatz M, Seitlinger G, Skursky R, Becker J, Resch H, Krifter RM. Short to mid-term results of stemless reverse shoulder arthroplasty in a selected patient population compared to a matched control group with stem. Int Orthop. 2016;40(10):2115–20.CrossRefGoogle Scholar
  84. 84.
    Schnetzke M, Preis A, Coda S, Raiss P, Loew M. Anatomical and reverse shoulder replacement with a convertible, uncemented short-stem shoulder prosthesis: first clinical and radiological results. Arch Orthop Trauma Surg. 2017;137(5):679–84.  https://doi.org/10.1007/s00402-017-2673-3.CrossRefPubMedGoogle Scholar
  85. 85.
    Wagner ER, Statz JM, Houdek MT, Cofield RH, Sánchez-Sotelo J, Sperling JW. Use of a shorter humeral stem in revision reverse shoulder arthroplasty. J Shoulder Elb Surg. 2017;26(8):1454–61.  https://doi.org/10.1016/j.jse.2017.01.016.CrossRefGoogle Scholar
  86. 86.
    Reuther F, Kohut G, Nijs S. Newly developed modular reverse fracture endoprosthesis in non-reconstructable humeral head fracture in old people. Oper Orthop Traumatol. 2014;26(4):369–82.;; quiz 382–4.  https://doi.org/10.1007/s00064-013-0250-7.CrossRefPubMedGoogle Scholar
  87. 87.
    Garofalo R, Flanagin B, Castagna A, Lo EY, Krishnan SG. Reverse shoulder arthroplasty for proximal humerus fracture using a dedicated stem: radiological outcomes at a minimum 2 years of follow-up-case series. J Orthop Surg Res. 2015;10:129.  https://doi.org/10.1186/s13018-015-0261-1.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Szerlip BW, Morris BJ, Edwards TB. Reverse shoulder arthroplasty for trauma: when, where, and how. Instr Course Lect. 2016;65:171–9.PubMedGoogle Scholar
  89. 89.
    Grubhofer F, Wieser K, Meyer DC, Catanzaro S, Beeler S, Riede U, Gerber C. Reverse total shoulder arthroplasty for acute head-splitting, 3- and 4-part fractures of the proximal humerus in the elderly. J Shoulder Elb Surg. 2016;25(10):1690–8.  https://doi.org/10.1016/j.jse.2016.02.024.CrossRefGoogle Scholar
  90. 90.
    Gigis I, Nenopoulos A, Giannekas D, Heikenfeld R, Beslikas T, Hatzokos I. Reverse shoulder arthroplasty for the treatment of 3 and 4-part fractures of the humeral head in the elderly. Open Orthop J. 2017;11:108–18.  https://doi.org/10.2174/1874325001711010108.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    King JJ, Farmer KW, Struk AM, Wright TW. Uncemented versus cemented humeral stem fixation in reverse shoulder arthroplasty. Int Orthop. 2015;39(2):291–8.  https://doi.org/10.1007/s00264-014-2593-6.CrossRefPubMedGoogle Scholar
  92. 92.
    Raiss P, Edwards TB, Deutsch A, Shah A, Bruckner T, Loew M, Boileau P, Walch G. Radiographic changes around humeral components in shoulder arthroplasty. J Bone Joint Surg Am. 2014;96(7):e54.  https://doi.org/10.2106/JBJS.M.00378.CrossRefPubMedGoogle Scholar
  93. 93.
    Zavala JA, Clark JC, Kissenberth MJ, Tolan SJ, Hawkins RJ. Management of deep infection after reverse total shoulder arthroplasty: a case series. J Shoulder Elb Surg. 2012;21(10):1310–5.  https://doi.org/10.1016/j.jse.2011.08.047.CrossRefGoogle Scholar
  94. 94.
    Berhouet J, Kontaxis A, Gulotta LV, Craig E, Warren R, Dines J, Dines D. Effects of the humeral tray component positioning for onlay reverse shoulder arthroplasty design: a biomechanical analysis. J Shoulder Elb Surg. 2015;24(4):569–77.  https://doi.org/10.1016/j.jse.2014.09.022.CrossRefGoogle Scholar
  95. 95.
    Roche CP, Hamilton MA, Diep P, Flurin PH, Routman HD. Design rationale for a posterior/superior offset reverse shoulder prosthesis. Bull Hosp Jt Dis (2013). 2013;71(Suppl 2):S18–2.Google Scholar
  96. 96.
    Onstot BR, Jacofsky MC, Hansen ML. Muscle force and excursion requirements and moment arm analysis of a posterior-superior offset reverse total shoulder prosthesis. Bull Hosp Jt Dis (2013). 2013;71(Suppl 2):S25–30.Google Scholar
  97. 97.
    Stübig T, Petri M, Zeckey C, Hawi N, Krettek C, Citak M, Meller R. 3D navigated implantation of the glenoid component in reversed shoulder arthroplasty. Feasibility and results in an anatomic study. Int J Med Robot. 2013;9(4):480–5.  https://doi.org/10.1002/rcs.1519.CrossRefPubMedGoogle Scholar
  98. 98.
    Venne G, Rasquinha BJ, Pichora D, Ellis RE, Bicknell R. Comparing conventional and computer-assisted surgery baseplate and screw placement in reverse shoulder arthroplasty. J Shoulder Elb Surg. 2015;24(7):1112–9.  https://doi.org/10.1016/j.jse.2014.10.012.CrossRefGoogle Scholar
  99. 99.
    Levy JC, Everding NG, Frankle MA, Keppler LJ. Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty. J Shoulder Elb Surg. 2014;23(10):1563–7.  https://doi.org/10.1016/j.jse.2014.01.051.CrossRefGoogle Scholar
  100. 100.
    Throckmorton TW, Gulotta LV, Bonnarens FO, Wright SA, Hartzell JL, Rozzi WB, Hurst JM, Frostick SP, Sperling JW. Patient-specific targeting guides compared with traditional instrumentation for glenoid component placement in shoulder arthroplasty: a multi-surgeon study in 70 arthritic cadaver specimens. J Shoulder Elb Surg. 2015;24(6):965–71.  https://doi.org/10.1016/j.jse.2014.10.013.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Celeste Bertone
    • 1
    • 2
    • 3
  • Dario Petriccioli
    • 1
    • 2
    • 3
  1. 1.Gruppo Ospedaliero San Donato, Istituti Ospedalieri BrescianiMilanoItaly
  2. 2.Istituto Clinico Sant’AnnaBresciaItaly
  3. 3.UO Ortopedia, Chirurgia della Spalla e del GomitoBresciaItaly

Personalised recommendations