Graph Theory pp 69-89 | Cite as
Forbidden Trees
Chapter
First Online:
Abstract
This chapter deals with some of the interesting properties of graphs that do not contain one of the two trees on four vertices, P4 or K1,3, as an induced subgraph, and with several conjectures that are related to forbidding these and similar trees.
References
- 1.N.R. Aravind et al., Bounding χ in terms of ω and Δ for some classes of graphs. Discrete Math. 311, 911–920 (2011)MathSciNetCrossRefGoogle Scholar
- 2.D. Bauer et al., Not every 2-tough graph is Hamiltonian. Discrete Appl. Math. 99, 317–321 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.J.A. Bondy, Pancyclic graphs I. J. Comb. Theory B 11, 41–46 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.J.A. Bondy, Pancyclic graphs: recent results, in Infinite and Finite Sets. Colloquia Mathematica Societatis János Bolyai (Colloq., Keszthely, 1973), pp. 181–187Google Scholar
- 5.H. Broersma et al., How many conjectures can you stand? A survey. Graphs Comb. 28, 57–75 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.C. Camby, O. Schaudt, A new characterization of Pk-free graphs. Algorithmica 71 (2015)Google Scholar
- 7.G. Chartrand, R.E. Pippert, Locally connected graphs. Čas. Pěst. Mat. 99, 158–163 (1974)MathSciNetzbMATHGoogle Scholar
- 8.M. Chudnovsky, P. Seymour, Claw-free graphs. I. Orientable prismatic graphs. J. Comb. Theory B 97(6), 867–903 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.M. Chudnovsky, P. Seymour, Extending the Gyárfás–Sumner conjecture. J. Comb. Theory B 105, 11–16 (2014)zbMATHCrossRefGoogle Scholar
- 10.V. Chvátal, Tough graphs and Hamiltonian circuits. Discrete Math. 5, 215–228 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.L. Clark, Hamiltonian properties of connected locally connected graphs. Congr. Numer. 32, 154–176 (1981)MathSciNetzbMATHGoogle Scholar
- 12.D.G. Corneil et al., Complement reducible graphs. Discrete Appl. Math. 3(3), 163–174 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.J.C. Dacey, Orthomodular spaces and additive measurement. Caribbean J. Sci. Math. 1, 51–66 (1969)MathSciNetGoogle Scholar
- 14.R. Faudree et al., Claw-free graphs – a survey. Discrete Math. 164(1–3), 87–147 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.H. Fleischner, The square of every 2-connected graph is Hamiltonian. J. Comb. Theory B 16, 29–34 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.D.J. Foulis, in Xeroxed Class Notes. Empirical logic (University of Massachusetts, Amherst, 1969)Google Scholar
- 17.D.J. Foulis, C.H. Randall, An approach to empirical logic. Am. Math. Mon. 77(4), 363 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.D.J. Foulis, C.H. Randall, Operational statistics I: basic concepts. J. Math. Phys. 13, 1667–1675 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.A. Gyárfás, On Ramsey covering numbers. Infinite Finite Sets 10, 801–816 (1973)MathSciNetGoogle Scholar
- 20.A. Gyárfás, Problems from the world surrounding perfect graphs. Zastowania Mat. Appl. Math. 19, 413–441 (1987)MathSciNetzbMATHGoogle Scholar
- 21.A. Gyárfás, in The Mathematics of Paul Erdos II, Algorithms and Combinatorics. Reflections on a problem of Erdős and Hajnal, vol 14 (Springer, Berlin, 1997), pp. 93–98, Chapter 10Google Scholar
- 22.P.V. Hof, D. Paulusma, A new characterization of P6-free graphs. Discrete Appl. Math. 158, 731–740 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Z. Hu et al., Hamiltonian connectivity of line graphs and claw-free graphs. J. Graph Theory 50, 130–141 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.T. Kaiser, P. Vrána, Hamiltonian cycles in 5-connected line graphs. Eur. J. Comb. 33, 924–947 (2012)zbMATHCrossRefGoogle Scholar
- 25.J.J. Karaganis, On the cube of a graph. Can. Math. Bull. 11, 295–296 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.H.A. Kierstead, On the chromatic index of multigraphs without large triangles. J. Comb. Theory B 36(2), 156–160 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.H.A. Kierstead, S.G. Penrice, Radius two trees specify χ-bounded classes. J. Graph Theory 18(2), 119–129 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.H.A. Kierstead, Y. Zhu, Radius three trees in graphs with large chromatic number. SIAM J. Discrete Math. 17, 571–581 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.A.D. King et al., An upper bound for the chromatic number of line graphs. Eur. J. Comb. 28, 2182–2187 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.R. Kuzel, L. Xiong, Every 4-connected graph is Hamiltonian if and only if it is Hamiltonian-connected, in Hamiltonian Properties of Graphs, ed. by R. Kuzel, PhD thesis, University of West Bohemia (2004)Google Scholar
- 31.H.-J. Lai, Ľ. Šoltés, Line graphs and forbidden induced subgraphs. J. Comb. Theory B 82(1), 38–55 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.M. Las Vergnas, A note on matchings in graphs. Cah. Centre Etudes Recherche Oper. 17 (2–3–4), 257–160 (1975)MathSciNetzbMATHGoogle Scholar
- 33.J. Liu, H. Zhou, Dominating subgraphs in graphs with some forbidden structures. Discrete Math. 135(1–3), 163–168 (1994)MathSciNetzbMATHGoogle Scholar
- 34.L. Lovász, M.D. Plummer, Matching Theory (AMS Chelsea Publishing, Providence, 2009)zbMATHGoogle Scholar
- 35.J. Malkevitch, On the lengths of cycles in planar graphs, in Proceedings of the Conference on Graph Theory and Combinatorics, St. John’s University (1970)Google Scholar
- 36.M.M. Matthews, Every 3-connected claw-free graph with fewer than 20 vertices is Hamiltonian. Technical Report 82-004 Department of Computer Science, University of South CarolinaGoogle Scholar
- 37.M.M. Matthews, D.P. Sumner, Hamiltonian results in K1,3-free graphs. J. Graph Theory 8(1), 139–146 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
- 38.D.J. Oberly, D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian. J. Graph Theory 3, 351–356 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.L. Rabern, A note on Reed’s conjecture. SIAM J. Discrete Math. 22, 820 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.B. Reed, ω, Δ, and χ. J. Graph Theory 27(4), 177–212 (1998)MathSciNetCrossRefGoogle Scholar
- 41.Z. Ryjáček, On a closure concept in claw-free graphs. J. Comb. Theory B 70(2), 217–224 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Z. Ryjáček, Problem 416. Weak pancyclicity of locally connected graphs. Discrete Math. 272, 305–306 (2003)Google Scholar
- 43.Z. Ryjáček, P. Vrána, A closure for 1-Hamilton-connectedness in claw-free graphs. J. Graph Theory 75, 358–376 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Z. Ryjáček, P. Vrána, Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs. J. Graph Theory 66(2), 152–173 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.A.D. Scott, Induced trees in graphs of large chromatic number. J. Graph Theory, 247–311 (1997)Google Scholar
- 46.D. Seinsche, On a property of the class of n-colorable graphs. J. Comb. Theory B 16(2), 191–193 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.R.H. Shi, Connected and locally connected graphs with no induced claws are vertex pancyclic. Kexu Tongbao 31, 427 (1986)Google Scholar
- 48.D.P. Sumner, 1-factors and antifactor sets. J. Lond. Math. Soc. s2-13(2), 351–359 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.D.P. Sumner, 1-Factors of point determining graphs. JCT(B) 16(1), 35–41 (1974)MathSciNetzbMATHGoogle Scholar
- 50.D.P. Sumner, Dacey graphs. J. Aust. Math. Soc. 18(4), 492–502 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
- 51.D.P. Sumner, Graphs with 1-factors. Proc. Am. Math. Soc. 42(1), 8–12 (1974)zbMATHGoogle Scholar
- 52.D.P. Sumner, Point determination in graphs. Discrete Math. 5(2), 179–187 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.D.P. Sumner, Subtrees of a graph and the chromatic number. Presented at the theory and applications of graphs, Western Michigan University (1981)Google Scholar
- 54.D.P. Sumner, The nucleus of a point determining graph. Discrete Math. 14(1), 91–97 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
- 55.Ľ. Šoltés, Forbidden induced subgraphs for line graphs. Discrete Math. 132(1–3), 391–394 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 56.C. Thomassen, A theorem on paths in planar graphs. J. Graph Theory 7, 169–176 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.C. Thomassen, Reflections on graph theory. J. Graph Theory 10(3), 309–324 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
- 58.W.T. Tutte, A theorem on planar graphs. Trans. Am. Math. Soc. 82, 99–116 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
- 59.W.T. Tutte, On Hamiltonian circuits. J. Lond. Math. Soc. 21, 98–101 (1946)MathSciNetzbMATHCrossRefGoogle Scholar
- 60.W.T. Tutte, The factorization of linear graphs. J. Lond. Math. Soc. 22, 107–111 (1947)MathSciNetzbMATHCrossRefGoogle Scholar
- 61.S.A. van Aardt et al., Local properties in graphs that imply global cycle properties. Report on the BIRS Focused Research Workshop 15frg184 (2015)Google Scholar
- 62.E.S. Wolk, A note on “The comparability graph of a tree”. Proc. Am. Math. Soc. 16(1), 17–20 (1965)MathSciNetzbMATHGoogle Scholar
- 63.S. Zhan, On Hamiltonian line graphs and connectivity. Discrete Math. 89, 89–95 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 64.C.Q. Zhang, Cycles of given length in some K1,3-free graphs. Discrete Math. 78, 307–313 (1989)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2018