Non-hydrostatic Stresses Under the Local Structures on Mars

  • A. BatovEmail author
  • T. Gudkova
  • V. Zharkov
Conference paper
Part of the Springer Proceedings in Earth and Environmental Sciences book series (SPEES)


To evaluate the stress field in the Martian interior a static-state approach is applied. We use trial interior structure model having 150–300 km thick lithosphere overlying a low rigidity layer, which partly lost elastic properties. Calculations of stresses are performed with spatial resolution a 1 × 1 arc-deg spherical grid and down to 1000 km depth. Stress estimates are calculated in the interiors of the planet under local topography structures, these areas are of interest to reveal the zones of possible marsquakes sources. Large non-hydrostatic stresses under Hellas Planitia, Argyre Planitia, Mare Acidalia, Arcadia Planitia and canyon Valles Marineris may lead to relatively increased seismic activity for these regions.


Mars Topography Gravity Stress field 



The work was supported by the Russian Foundation for Basic Research and Program RAN 28.


  1. Arkani-Hamed, J. (2000). Strength of Martian lithosphere beneath large volcanoes. J. Geophys. Res. 105, E11, 26713–26732.CrossRefGoogle Scholar
  2. Banerdt, W.B., Phillips, R.J., Sleep, N.H., Saunders, R.S. (1982). Thick shell tectonics of one plate planets: application to Mars. J. Geophys. Res. 87, B12, 9723–9734.CrossRefGoogle Scholar
  3. Banerdt, W., Golombek, M.P., Tanaka, K.L. (1992). Stress and tectonics on Mars. Mars, 1, 249–297.Google Scholar
  4. Banerdt, W.B., Golombek, M.P. (2000). Tectonics of the Tharsis region of Mars: insights from MGS topography and gravity. In Proceedings of the 31st Lunar and Planetary Science Conference. 2038. pdf.Google Scholar
  5. Banerdt, W.B., Smrekar, S., Lognonné, P., Spohn, T., Asmar, S.W., Banfield, D., Boschi, L., Christensen, U., Dehant, V., Folkner, W., Giardini,D., Goetze, W., Golombek, M., Grott, M., Hudson, T., Johnson, C., Kargl, G., Kobayashi, N., Maki, J., Mimoun, D., Mocquet, A., Morgan, P., Panning, M., Pike, W.T., Tromp, J., van Zoest, T., Weber, R., Wieczorek, M.A., Garcia, R., Hurst, K. (2013). InSight: a discovery mission to explore the interior of Mars. In Proceedings of the 44th Lunar and Planetary Science Conference, p. 1915.Google Scholar
  6. Belleguic, V., Lognonné, P., Wiezorek, M. (2005). Constraints on the Martian lithosphere from gravity and topography data J. Geophys. Res. 110. E11005.
  7. Dimitrova, L.L., Holt, W.E., Haines, A.J., Schultz, R.A. (2006). Toward understanding the history and mechanisms of Martian faulting: The contribution of gravitational potential energy. Geophys. Res. Lett. 33, L08202,
  8. Genova, A., Goossens, S., Lemoine, F.G., Mazarico, E., Neumann, G.A., Smith, D.E., Zuber, M.T. (2016). Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245.CrossRefGoogle Scholar
  9. Gudkova, T.V., Batov, A.V., Zharkov, V.N. (2017). Model estimates of non-hydrostatic stresses in the Martian crust and mantle: 1. Two-level model. Solar Syst. Res. 51 (6), 457–478.CrossRefGoogle Scholar
  10. Knapmeyer M., Oberst J., Hauber E., Wählisch M., Deuchler C., Wagner R. (2006). Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111, E11006,
  11. Konopliv, A.S., Park, R.S., Folkner, W.M. (2016). An improved JPL Mars gravity field and Orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260.CrossRefGoogle Scholar
  12. Koshlyakov, E.M., Zharkov, V.N. (1993). On gravity field of Mars. Sol. Syst. Res. 27 (2), 12–21.Google Scholar
  13. Manukin, A. B., Kalinnikov, I. I., Kalyuzhny, A. V., Andreev, O. N. (2016). High-sensitivity three-axis seismic accelerometer for measurements at the spacecraft and the planets of the solar system. In Proceedings of Solar System conference 7ms3, IKI RAN.Google Scholar
  14. Marchenkov, K.I., Lyubimov, V.M., Zharkov, V.N. (1984). Calculation of load factors for deeply buried density anomalies. Doklady Earth Science Sections 279, 14–16.Google Scholar
  15. Marchenkov, K.I., Zharkov, V.N. (1989). Stresses in the Venus crust and the topography of the mantle boundary. Sol. Astron. Lett. 16 (1), 77–81.Google Scholar
  16. Plesa, A.-C., Grott, M., Tosi, N., Breuer, D., Spohn, T., Wieczorek, M. (2016). How large are presently heat flux variations across the surface of Mars? J. Geophys. Res. Planets, 121, 12, 2386–2403, Scholar
  17. Sleep, N.H., Phillips, R.J. (1985). Gravity and lithospheric stress on the terrestrial planets with References to the Tharsis region of Mars. J. Geophys. Res., 90, B6, 4469–4490.CrossRefGoogle Scholar
  18. Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B., Head, J.W., Muhleman, D.O., Pettengill, G.H., Phillips, R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B., Duxbury, T.C., Golombek, M.P., Lemoine, F.G., Neumann, G.A., Rowlands, D.D., Aharonson, O., Ford, P.G., Ivanov, A.B., Johnson, C.L., McGavern, P.J., Abshire, J.B., Afzal, and R.S., Sun, X., (2001). Mars Orbiter Laser Altimeter: Experimental summary after the first year of global mapping of Mars. J. Geophys. Res., 106 (E10): 23689–23722.CrossRefGoogle Scholar
  19. Tenzer, R., Eshagh, M., Jin, S. (2015). Martian sub-crustal stress from gravity and topographic Models. Earth and Planetary Science Letters. 425, 84–92.CrossRefGoogle Scholar
  20. Zharkov, V.N. Marchenkov, K.I., Lyubimov, V.M. (1986). On long-waves shear stresses in the lithosphere and the mantle of Venus. Sol. Syst. Res., 20, 202–211.Google Scholar
  21. Zharkov, V.N., Koshlyakov, E.M., Marchenkov, K.I. (1991). Composition, structure and gravitational field of Mars. Sol. Syst. Res. 25, 515–547.Google Scholar
  22. Zharkov, V.N., Gudkova, T.V., Molodensky, S.M. (2009). On models of Mars’ interior and amplitudes of forced nutations. 1. The effects of deviation of Mars from its equilibrium state on the flattening of the core-mantle boundary. Phys. Earth Planet. Inter. 172, 324–334.CrossRefGoogle Scholar
  23. Zharkov, V.N., Gudkova, T.V. (2016). On model structure of gravity field of Mars. Sol. Syst. Res. 50, 250–267.Google Scholar
  24. Zharkov, V.N., Gudkova, T.V., Batov, A.V. (2017). On estimating the dissipative factor of the Martian interior. Sol. Syst. Res. 51, 6, 479–490.CrossRefGoogle Scholar
  25. Zhong S., Roberts J.H. On the support of the Tharsis Rise on Mars//Earth Planet. Sci. Lett. (2003). V. 214. P. 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Control Sciences of RASMoscowRussia
  2. 2.Schmidt Institute of Physics of the Earth RASMoscowRussia

Personalised recommendations