Advertisement

Building Blocks of Life

  • Dirk Schulze-Makuch
  • Louis N. Irwin
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Life is based on complex chemistry yet only a few of all the available elements participate in most life-supporting reactions on Earth: carbon, nitrogen, oxygen, hydrogen, phosphorous, and sulfur. Of these, the most characteristic element of biological systems is carbon. In this chapter we will discuss why carbon is so favored by life on Earth and whether other elements could replace carbon in its dominant role on other worlds.

References

  1. Acevedo-Rocha, C.G. and D. Schulze-Makuch. 2015. How many biochemistries are available to build a cell. ChemBioChem 16: 2137-2139.CrossRefGoogle Scholar
  2. Amend, J.P., and E.L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol. Rev. 25: 175-243.CrossRefGoogle Scholar
  3. Azam, F., B.B. Hemmingsen, and B.E. Volcani. 1974. Role of silicon in diatom metabolism. V. Silicic acid transport and metabolism in the heterotrophic diatom. Nitzschia alba. Arch. Microbiol. 97: 103-114.CrossRefGoogle Scholar
  4. Bain, J.D., E.S. Diala, C.G. Glabe, et al. 1989. Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide. J. Am. Chem. Soc. 111: 8013-8014.CrossRefGoogle Scholar
  5. Bains, W. 2004. Many chemistries could be used to build living systems. Astrobiology 4: 137-167.ADSCrossRefGoogle Scholar
  6. Bains, W. and S. Seager. 2012. A combinatorial approach to biochemical space: description and application to the redox distribution of metabolism. Astrobiology 12: 271-281.ADSCrossRefGoogle Scholar
  7. Bastian, H.C. 1914. Experimental data in evidence of the present-day occurrence of spontaneous generation Nature 92: 579-583.CrossRefGoogle Scholar
  8. Benner, S.A., A. Ricardo and M.A. Carrigan. 2004. Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 8: 672-689.CrossRefGoogle Scholar
  9. Benner, S.A., W. Bains, and S. Seager. 2013. Models and standards of proof in cross-disciplinary science: the case of arsenic DNA. Astrobiology 13: 510-513.ADSCrossRefGoogle Scholar
  10. Benner, S.A. 2017. Detecting Darwinism from molecules in the Enceladus plumes, Jupiter´s moons, and other planetary water lagoons. Astrobiology 17: 840-851.ADSGoogle Scholar
  11. Birchall, J.D. 1995. The essentiality of silicon in biology. Chem. Soc. Rev. 24: 351-357.CrossRefGoogle Scholar
  12. Bowen, T.C., R.D. Noble, and J.L. Falconer. 2004. Fundamentals and applications of pervaporation through zeolite membranes. J. Memb. Sci. 245: 1-33.CrossRefGoogle Scholar
  13. Cairns-Smith, A.G. 1982. Genetic Takeover. Cambridge University Press, London.Google Scholar
  14. Cairns-Smith, A.G. 1985. Seven clues to the origin of life. Cambridge University Press, Cambridge.Google Scholar
  15. Cairns-Smith, A.G., and H. Hartman. 1986. Clay minerals and the origin of life Cambridge University Press, UK.Google Scholar
  16. Carlisle, E.M. 1981. Silicon in bone formation. pp. 383-408. in Simpson and Volcani, eds. Silicon and Siliceous Structures in Biological Systems Springer Verlag, New York.CrossRefGoogle Scholar
  17. Chakrabarty, A.N., S. Das and K. Mukherjee. 1988. Silicon (Si) utilisation by chemoautotrophic nocardioform bacteria isolated from human and animal tissues infected with leprosy bacillus Indian J. Exp. Biol. 26: 839-844.Google Scholar
  18. Chen, C.A., S.M. Sieburth and A.G.e. al. 2001. Drug design with a new transition state analog of the hydrated carbonyl: silicon-based inhibitors of the HIV protease. Chemistry and Biology 8: 1161-1166.CrossRefGoogle Scholar
  19. Chièze, J.P. 1994. The interstellar medium. in J. Audouze and G. Israël, eds. The Cambridge Atlas of Astronomy. Cambridge University Press., UK.Google Scholar
  20. Christen, H.R. 1984. Chemie Verlag Diesterweg/Salle – Sauerlaender, Frankfurt, Germany.Google Scholar
  21. CRC. 2001. Handbook of chemistry and physics. CRC Press, Boca Raton, FL.Google Scholar
  22. Cronin, J.R., S. Pizzarello and D.P. Cruikshank. 1988. Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. pp. 819-857 in K. JF and M. MS, eds. Meteorites and the Early Solar System Univ. of Arizona Press, Tucson.Google Scholar
  23. Dahn, J.R., B.M. Way, E. Fuller, et al. 1993. Structure of siloxene and layered polysilane (Si6H6). Phys. Rev. B 48: 17872-17877.ADSCrossRefGoogle Scholar
  24. Darley, W.M., and B.E. Volcani. 1969. Role of silicon in diatom metabolism. A silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Exp. Cell Res. 58: 334-342.CrossRefGoogle Scholar
  25. Das, S., S. Mandal, A.N. Chakrabarty, et al. 1992. Metabolism of silicon as a probable pathogenicity factor for Mycobacterium and Nocardia Indian J. Med. Res. 95: 59-65.Google Scholar
  26. DeLeeuw, B.J., R.S. Grev and H.F. Schaefer. 1992. A comparison and contrast of selected and unsaturated hydrides of group 14 elements. J. Chem. Ed., 69: 441-444.CrossRefGoogle Scholar
  27. Dessey, R. 1998. Posted in Scientific American Ask the Expert.Google Scholar
  28. Ehrenfreund, P., and K.M. Menten. 2002. From molecular clouds to the origin of life. pp. 1-23 in G. Horneck and C. Baumstark-Khan, eds. Astrobiology – the Quest for the Conditions of Life Springer Publ., Berlin.CrossRefGoogle Scholar
  29. Elsila, J.E, D.P. Glavin, and J.P. Dworking. 2009. Cometary glycine detected in samples returned by Stardust. Meteoritics Planet. Sci. 44: 1323-1330.ADSCrossRefGoogle Scholar
  30. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91: 11-17.ADSCrossRefGoogle Scholar
  31. Erb, T.J., P. Kiefer, B. Hattendorf, D. Gunther, J.A. Vorholt. 2012. FGAJ-1 is an arsenate-resistant, phosphate-dependent organism. Science 337: 467-470ADSCrossRefGoogle Scholar
  32. Fegley Jr. B. 1987. Carbon chemistry and organic compound synthesis in the solar nebula. Meteoritics 22: 378.ADSGoogle Scholar
  33. Feher, F.J. 2000. Polyhedral oligosilsesquioxanes and heterosilsesquioxanes. pp. 43-59. Silicon, Germanium and Tin Compounds, Metal Alkoxides, Metal Diketons and Silicones. Gelest Inc., Tullytown, PA.Google Scholar
  34. Feinberg, G., and R. Shapiro. 1980. Life beyond Earth: The Intelligent Earthling’s Guide to Life in the Universe. William Morrow and Company, Inc, New York.Google Scholar
  35. Firsoff, V.A. 1963. Life beyond the Earth. Basic Books, Inc., New York.Google Scholar
  36. Fujino, M. 1987. Photoconductivity in organopolysilanes. Chem. Phys. Lett. 136: 451-453.ADSCrossRefGoogle Scholar
  37. Furusawa, K. 1994. Protection of nucleosides using bifunctional sully reagents. Journal of the National Institute of Materials and Chemical Research 2: 337.Google Scholar
  38. George Cooper, Novelle Kimmich, Warren Belisle, Josh Sarinana, Katrina Brabham, Laurence Garrel, (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414 (6866):879-883.ADSCrossRefGoogle Scholar
  39. Gibard, C., S. Bhowmik, M. Karki, E.-K. Kim and R. Krishnamurthy. 2017. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nature Chem. doi: https://doi.org/10.1038/nchem.2878.ADSCrossRefGoogle Scholar
  40. Gladstone, G.R., K.M. Towe and J.F. Kasting. 1993. Photochemistry in the primitive solar nebula; discussions and reply Science 261: 5124.Google Scholar
  41. Goldsmith, D., and T. Owen. 2003. The Search for Life in the Universe University Science Books, Sausalito.Google Scholar
  42. Greenwood, N.N., and A. Earnshaw. 1984. Chemistry of the Elements Pergamon Press, Oxford, Great Britain.Google Scholar
  43. Hanon, P., M. Chaussidon and F. Robert. 1996. The redox state of the solar nebula; C and H concentrations in chondrules. Meteoritics & Planetary Science 31: 57.Google Scholar
  44. Harrison, P.G. 1977. Silicate cages: precursors to new materials. J. Organometal. Chem. 542: 141-184.CrossRefGoogle Scholar
  45. Henderson, M.E.K. and R.B. Duff. 1965. The release of metallic and silicate ions from mineral rocks and soils by fungal activity. J. Soil Sci. 14: 236-246.CrossRefGoogle Scholar
  46. Heron, N. 1989. Toward Si-based life: zeolites as enzyme mimics Chemtech Sept. September: 542-548.Google Scholar
  47. Hoesl, M.G., Oehm, S., Durkin, P., Darmon, E., Peil, L., et al. 2015. Chemical evolution of a bacterial proteome. Ang. Chem.: doi: https://doi.org/10.1002/anie.201502868.Google Scholar
  48. Hohsaka, T., and S.M. Masahiko. 2002. Incorporation of non-natural amino acids into proteins. Curr. Opin. Chem. Biol. 6: 809-815.CrossRefGoogle Scholar
  49. Kan, S. B., R. D. Lewis, K. Chen, and F. H. Arnold. 2016. Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life. Science 354: 1048-1051.ADSCrossRefGoogle Scholar
  50. Koerner, D., and S. LeVay. 2000. Here Be Dragons: The Scientific Quest for Extraterrestrial Life Oxford University Press, New York.Google Scholar
  51. Kröger, N., S. Lorenz, E. Brunner, et al. 2002. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis Science 298: 584-586.ADSCrossRefGoogle Scholar
  52. Lauwers, A.M. and W. Heinen. 1974. Biodegradation and utilisation of silica and quartz Arch. Microbiol. 95: 67–78.CrossRefGoogle Scholar
  53. LeGrand, A.P. 1998. The Surface Properties of Silicas. John Wiley and Sons, New York.Google Scholar
  54. Lewin, J.C. 1954. Silicon metabolism in diatoms. I. Evidence for the role of reduced sulfur compounds in silicon utilization J. Gen. Physiol. 37: 589-599.CrossRefGoogle Scholar
  55. Linn, N. 2001. Molecular visualization using methods of computational chemistry. Summer Ventures in Science and Mathematics. University of North Carolina at Charlotte.Google Scholar
  56. Llorca, J. 1998. Gas-grain chemistry of carbon in interplanetary dust particles; kinetics and mechanism of hydrocarbon formation. p. 29. 29th Lunar and Planetary Science Conference.Google Scholar
  57. Matson, D.L., and D.L. Blaney. 1999. Io. pp. 357-376 in P.R. Weissman, McFadden L.-A. and T.V. Johnson, eds. Encyclopedia of the Solar System. Academic Press, New York.Google Scholar
  58. Maxka, J., L.M. Huang and R. West. 1991. Synthesis and NMR spectroscopy of per-methylpolysilane oligomers Me(SiMe2)10Me, Me(SiMe2)16Me, and Me(Me2Si)22. Organimetallics 10: 656-659.CrossRefGoogle Scholar
  59. Mehard, C.W., C.W. Sullivan, F. Azam, and B.E. Volcani. 1974. Role of silicon in diatom metabolism. IV. subcellular localization of silicon and germanium in Nitzschia alba and Cylindrotheca fusiformis. Physiol. Plant. 30: 265-272. 30: 265-272.CrossRefGoogle Scholar
  60. Miller, P.S., K.B. McParland, K. Jayaraman, et al. 1981. Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry 20: 1874-1880.CrossRefGoogle Scholar
  61. Muller, T., W. Zilche and N. Auner. 1998. Recent advances in the chemistry of Si-heteroatom multiple bonds. pp. 857-1062 in Z. Rappoport and Y. Apeloig, eds. The Chemistry of Organic Silicon Compounds. John Wiley & Sons, Chichester, UK.CrossRefGoogle Scholar
  62. Noren, C.J., S.J. Anthony-Cahill, M.C. Griffith, et al. 1989. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244: 182-188.ADSCrossRefGoogle Scholar
  63. Parkinson, S.M., M. Wainwright and K. Killham. 1989. Observations on oligotrophic growth of fungi on silica gel. Mycol. Res. 93: 529-534.CrossRefGoogle Scholar
  64. Pasek, M. A., J. P. Harnmeijer, R. Buick, M. Gull, and Z. Atlas. 2013. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA 110: 10089-94.ADSCrossRefGoogle Scholar
  65. Pawlenko, S. 1986. Organosilicon Chemistry. De Gruyter, Berlin.CrossRefGoogle Scholar
  66. Pickett-Heaps, J., A.A.A. Schmid and L.A. Edgar. 1990. pp. 1-169 in F.E. Round and D.J. Chapman, eds. Progress in Phycological Research 7. Biopress, Bristol, UK.Google Scholar
  67. Reddy, P.M., and T.C. Bruice. 2003. Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) oligonecleotide mixed sequences. Biorg. Med. Chem. Lett. 13: 1281-1285.CrossRefGoogle Scholar
  68. Reynolds, J.E. 1906. Recent advances in our knowledge of silicon and its relation to organised structures Proc. R. Inst. GB 19: 642-650.Google Scholar
  69. Richter, O. 1906. Zur Physiologie der Diatomeen. Sitzber. Akad. Wiss. Wien, Math.-Naturw. Kl. 115: 27-119.Google Scholar
  70. Samuels, A.L., and A.D.M. Glass. 1991. Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fulginea) Can. J. Bot. 69: 140-146.Google Scholar
  71. Sangster, A.G., and D.W. Parry. 1981. Ultrastructure of silica deposits in higher plants. pp. 383-408 in Simpson and Volcani, eds. Silicon and Siliceous Structures in Biological Systems. Springer Verlag, New York.CrossRefGoogle Scholar
  72. Schulze-Makuch, D., and D.H. Grinspoon. 2005. Biologically Enhanced Energy and Carbon Cycling on Titan? Astrobiology 5: 560-567.ADSCrossRefGoogle Scholar
  73. Schulze-Makuch, D. and L.N. Irwin. 2006. Exotic forms of life in the universe. Naturwissenschaften 93: 155-172.ADSCrossRefGoogle Scholar
  74. Sekiguchi, A., R. Kinjo and M. Ichinohe. 2004. A stable compound containing a silicon-silicon triple bind. Science 305: 1755-1757.ADSCrossRefGoogle Scholar
  75. Sharma, A., J.H. Scott, G.D. Cody, et al. 2002. Microbial activity at gigapascal pressures. Science 295: 1514-1516.ADSGoogle Scholar
  76. Sharma, H.K., and K.H. Pannell. 1995. Activation of the Si-Si bond by transition metal complexes. Chem. Rev. 95: 1351-1374.CrossRefGoogle Scholar
  77. Sharp, T.G., A.E. Goresy, B. Wopenka, et al. 1999. A post-stishovite SiO2 polymorph in the meteorite Shergotty: implications for impact events. Science 284: 1511-1513.ADSCrossRefGoogle Scholar
  78. Spencer, J.H. 1940. Life on Other Worlds. Hodder and Stoughton, London, UK.Google Scholar
  79. Steinbeck, C., and C. Richert. 1998. The role of ionic backbones in RNA structure: an unusual stable non-Watson-Crick duplex of a nonionic analog in an apolar medium. J. Am. Chem. Soc. 120: 11576-11580.CrossRefGoogle Scholar
  80. Stone, F.G.A., and R. West. 1994. Advances in organometallic chemistry. Academic Press, New York.Google Scholar
  81. Tacke, R., and U. Wannagat. 1979. Syntheses and Properties of Bioactive Organo-Silicon Properties. Springer-Verlag, Berlin.Google Scholar
  82. Tokito, N., and R. Okazaki. 1998. Polysilanes: Conformation, chromotropism and conductivity. pp. 1063-1104 in Z. Rappoport and Y. Apeloig, eds. The Chemistry of Organic Silicon. John Wiley and Sons, Chichester, UK.CrossRefGoogle Scholar
  83. Tribe, H.T., and S.A. Mabadje. 1972. Growth of moulds on media prepared without organic nutrients Trans Br. Mycol. Soc. 58: 127-137.CrossRefGoogle Scholar
  84. Varela, M.E., and N. Metrich. 2000. Carbon in olivines of chondritic meteorites. Geochim. Cosmochim. Acta. 64: 3433-3438.ADSCrossRefGoogle Scholar
  85. Wainwright, M. 1997. The neglected microbiology of silicon - from the origin of life to an explanation for what Henry Charlton Bastian saw. Society General Microbiology Quarterly, 24: 83-85.Google Scholar
  86. Wainwright, M., K. Al-Wajeeh and S.J. Grayston. 1997. Effect of silicic acid and other silicon compounds on fungal growth in oligotrophic and nutrient-rich media Mycological Research 101: 8.CrossRefGoogle Scholar
  87. Walsh, R. 1981. Bond dissociation energy values in silicon-containing compounds and some of their implications. Accounts Chem. Res. 14: 246-252.CrossRefGoogle Scholar
  88. Wang, Q., A.R. Parrish, L.Wang. 2009b. Expanding the genetic code for biological studies. Chemistry & Biology 16: 323-336.Google Scholar
  89. Werner, D. 1967. Untersuchungen ueber die Rolle der Kieselsaeure in der Entwicklung hoeherer Pflanzen. I Analyse der Hemmung durch Germaniumsaeure. Planta (Berlin) 76: 25-36.Google Scholar
  90. West, R. 1986. The polysilane high polymers. J. Organometallic Chem. 300: 327-346.CrossRefGoogle Scholar
  91. West, R. 1987. Chemistry of the silicone-silicone double bond. Angew. Chem. Int. Ed., 26: 201-1211.CrossRefGoogle Scholar
  92. West, R. 2001. Polysilanes: Conformation, chromotropism and conductivity. pp. 541-563 in Z. Rappoport and Y. Apeloig, eds. The Chemistry of Organic Silicon. John Wiley and Sons, Chichester, UK.CrossRefGoogle Scholar
  93. Westheimer, F.H. 1987. Why nature chose phosphates. Science 235: 1173-1178.ADSCrossRefGoogle Scholar
  94. Wolfe-Simon, F., J. Switzer Blum, T. R. Kulp, G. W. Gordon, et al. 2011. A bacterium that can grow by using arsenic instead of phosphorus. Science 332: 1163-1166.ADSCrossRefGoogle Scholar
  95. Yamamoto, K., Y. Sakata, Y. Nohara, et al. 2003. Organic-inorganic hybrid zeolites containing organic frameworks Science 300: 470-472.Google Scholar
  96. Yoshino, T. 1990. Growth accelerating effect of silicon on Pseudomonas aeruginosa. J. Saitama Med. Sch. (in Japanese). 17: 189-198.Google Scholar
  97. Zeigler, J.M., and F.W.G. Fearon. 1989. Silicon-based polymer science: a comprehensive resource American Chemical Society, Washington, DC.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dirk Schulze-Makuch
    • 1
  • Louis N. Irwin
    • 2
  1. 1.Center for Astronomy and AstrophysicsTechnical University BerlinBerlinGermany
  2. 2.University of Texas at El PasoEl PasoUSA

Personalised recommendations