Life Detection: Past and Present

  • Dirk Schulze-Makuch
  • Louis N. Irwin
Part of the Springer Praxis Books book series (PRAXIS)


In this chapter we go beyond the search for geoindicators and biosignatures that might point to the presence of life, with the specific aim of detecting and confirming the presence of life. First, we review the results and interpretations of the Viking mission—the only life detection experiment ever conducted on another planetary body to date. We also examine the claim of fossilized life in the Martian meteorite ALH84001, which is instructive for the problematic issue of what evidence constitutes a positive detection of extraterrestrial life. Finally, we will provide a brief overview on the development of current life detection methods and their likely implementation.


  1. Bada, J.L. 2001. State-of-the-art instruments for detecting extraterrestrial life. Proc. Natl. Acad. Sci. USA 98: 797-800.ADSCrossRefGoogle Scholar
  2. Baker, B.J., G.W. Tyson, R.I. Webb, et al. 2006. Lineages of acidophilic archaea revealed by community genomic analysis. Science 314: 1933-1935.ADSCrossRefGoogle Scholar
  3. Ballou, E.V., P.C. Wood, T. Wydeven, et al. 1978. Chemical interpretation of Viking lander 1 life detection experiment. Nature 271: 644-645.ADSCrossRefGoogle Scholar
  4. Barber, D.J., and E.R.D. Scott. 2002. Origin of supposedly biogenic magnetite in the martian meteorite Alan Hills 84001. Proc. Natl. Acad. Sci. USA 99: 6556-6561.ADSCrossRefGoogle Scholar
  5. Baross, J.A., S.A. Benner, G.D Cody, S.D. Copley, N.R. Pace, and et al. 2007. The Limits of Organic Life in Planetary Systems. Washington, D.C.: National Academies Press.Google Scholar
  6. Benner, S.A., K.G. Devine, L.N. Matveeva, et al. 2000. The missing organic molecules on Mars. Proc. Natl. Acad. Sci. USA 97: 2425-2430.ADSCrossRefGoogle Scholar
  7. Biemann, K. 1979. The implications and limitations of the findings of the Viking organic analysis experiment. J. Molec. Evol. 14: 65-70.ADSCrossRefGoogle Scholar
  8. Bowden, S., R. Wilson, J.M. Cooper, and J. Parnell. 2008. Surface enhanced Raman spectroscopy as a tool for characterizing pigments in the extracts of living organisms and sediments. Astrobiology 8: 302.CrossRefGoogle Scholar
  9. U. Böttger, J.-P. de Vera, J. Fritz, I. Weber, H.-W. Hübers, D. Schulze-Makuch, (2012) Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planetary and Space Science 60 (1):356-362.ADSCrossRefGoogle Scholar
  10. Bradley, J.P., R.P. Harvey and H.Y. McSween. 1996. Magnetite whiskers and platelets in the ALH84001 martian meteorite: evidence of vapor phase growth. Geochim. Cosmochim. Acta 60: 5149-5155.ADSCrossRefGoogle Scholar
  11. Bradley, J.P., R.P. Harvey and H.Y. McSween. 1997. No ‘nannofossils’ in martian meteorite. Nature 390: 454-456.ADSCrossRefGoogle Scholar
  12. Brasier, M.D., O.R. Green, A.P. Jepherat, et al. 2002. Questioning the evidence for Earth’s oldest fossils. Nature 416: 76-81.ADSCrossRefGoogle Scholar
  13. Chen, B., C. Stoker, N. Cabrol, and C.P. McKay. 2008. Detecting life on Mars: Raman spectra identifications of mineral and organic constituents. Astrobiology 8: 303.Google Scholar
  14. Ciftςioglu, N., M. Björklund, K. Kuorikoski, et al. 1999. Nanobacteria: an infectious cause for kidney stone formation. Kidney Intl. 56: 1893-1898.CrossRefGoogle Scholar
  15. Clark, M.V., J. Heinz, J. Schirmack, S.P. Kounaves, and D. Schulze-Makuch, D. 2017. Unambiguous in-situ life detection using a microbial growth sensing array. Astrobiological Science Conference (AbSciCon), Mesa, Arizona, USA, 24-28 April 2017.Google Scholar
  16. Dieter, W.R., R.A. Lodder and J.E. Lumpp. 2005. Scanning for Extinct Astrobi-ological Residues and Current Habitats (SEARCH). pp. 234-245. Aerospace IEEE Conference.Google Scholar
  17. Edwards, H.G.M., and E.M. Newton. 1999. Application of Raman spectroscopy to exobiological prospecting. pp. 83-88 in J.A. Hisox, ed. Search for Life on Mars. British Interplanetary Society, London.Google Scholar
  18. Eiler, J.M., J.W. Valley, C.M. Graham, et al. 2002. Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis. Geochim. Cosmochim. Acta 66: 1285-1303.ADSCrossRefGoogle Scholar
  19. Eschenbach, D.A., Davick, P.R., Williams, B.L., Klebanoff, S.J., Young-Smith, K., Critchlow, C.M., and Holmes, K.K. 1989. Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J. Clin. Microbiol. 27: 251-256.Google Scholar
  20. Fisk, M.R., R. Popa, O.U. Mason, et al. 2006. Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6: 48-68.ADSCrossRefGoogle Scholar
  21. Folk, R.L. 1993. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sediment. Res. 63: 990-999.Google Scholar
  22. Folk, R.L. 1999. Nannobacteria and the precipitation of carbonate in unusual environments. Sedimentary Geology 126: 47-55.ADSCrossRefGoogle Scholar
  23. Freissinet, C., D.P. Glavin, P.R. Mahaffy, K.E. Miller, J.L. Eigenbrode, et al. 2015. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. JGR-Planets 120: 495-514.ADSGoogle Scholar
  24. Friedmann, E.I., J. Wierzchos, C. Ascaso, et al. 2001. Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proc. Natl. Acad. Sci. USA 98: 2176-2181.ADSCrossRefGoogle Scholar
  25. Furnes, H., N.R. Banerjee, K. Muehlenbachs, et al. 2004. Early life recorded in Archean pillow lavas. Science 304: 578-581.ADSCrossRefGoogle Scholar
  26. Gibson, E.K., D.S. McKay, K.L. Thomas-Keprta, et al. 2006. Life on Mars: evaluation of the evidence within martian meteorites ALH84001, Nakhla, and Shergotty. Precambrian Res. 106: 15-34.ADSCrossRefGoogle Scholar
  27. Glavin, D.P., J.L. Bada, O. Botta, et al. 2001. Integrated micro-chip amino acid chirality detector for MOD. p. abstract #1442. 32nd Lunar and Planetary Science Conference, Houston, Texas.Google Scholar
  28. Glavin, D.P., C. Freissinet, K.E. Miller, J.L. Eigenbrode, A.E. Brunner, et al. 2013. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. JGR-Planets 118: 1955-1973.ADSGoogle Scholar
  29. Golden, D.C., D.W. Ming, C.S. Schwandt, et al. 2001. A simple inorganic process for formation of carbonates, magnetite, and sulfides in martian meteorite ALH84001. Amer. Mineralog. 86: 370-375.ADSCrossRefGoogle Scholar
  30. Harvey, R.P., and H.Y. McSween. 1996. A possible high-temperature origin for the carbonates in the martian meteorite ALH84001. Nature 382: 49-51.ADSCrossRefGoogle Scholar
  31. Hecht, M.H., S.P. Kounaves, R.C. Quinn, S.J. West, S.M.M. Young, et al. 2009. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325: 64-67.ADSCrossRefGoogle Scholar
  32. Hoehn, A., K. Lynch, J. Clawson, J. Freeman, J. Kapit, et al. 2007. Microbial Detection Array (MDA), a novel instrument for unambiguous detection of microbial metabolic activity in astrobiology applications. SAE Technical Paper 2007-01-3190,
  33. Houtkooper, J.M. and D. Schulze-Makuch. 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int. J. Astrobiol. 6: 147–152.CrossRefGoogle Scholar
  34. Horowitz, N.H., G.L. Hobby and J.S. Hubbard. 1977. Viking on Mars: The Viking carbon assimilation experiments. J. Geophys. Res. 82: 4659-4662.ADSCrossRefGoogle Scholar
  35. Houtkooper, J.M. and D. Schulze-Makuch. 2010. Do perchlorates have a role for Martian life? J. Cosmol. 5: 930-939.ADSGoogle Scholar
  36. Ishii, Y., and T. Yanagida. 2000. Single molecule detection in life science. Single Mol. 1: 5-16.ADSCrossRefGoogle Scholar
  37. Kajander, E.O., I. Kuronen, K. Akerman, et al. 1997. Nanobacteria from blood, the smallest culturable autonomously replicating agent on Earth. Proc. SPIE 3111: 420-428.ADSCrossRefGoogle Scholar
  38. Kajander, E.O., and N. Ciftςioglu. 1998. Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA 95: 8274-8279.ADSCrossRefGoogle Scholar
  39. Kent, A.J.R., I.D. Hutcheon, F.J. Ryerson, et al. 2001. The temperature of formation of carbonate in martian meteorite ALH84001: constraints from cation diffusion. Geochim. Cosmochim. Acta 65: 311-321.ADSCrossRefGoogle Scholar
  40. Keppler, F., D.B. Harper, M. Greule, U. Ott, T. Sattler, et al. 2014. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Sci. Rept. 4: 7010.CrossRefGoogle Scholar
  41. Kirkland, B.L., F.L. Lynch, M.A. Rahnis, et al. 1999. Alternative origins for nannobacteria-like objects in calcite. Geology 27: 347-350.ADSCrossRefGoogle Scholar
  42. Kirschvink, J.L., A.T. Maine and H. Vali. 1997. Paleomagnetic evidence of a low-temperature origin of carbonate in the martian meteorite ALH84001. Science 275: 1629-1633.ADSCrossRefGoogle Scholar
  43. Klein, H.P. 1977. The Viking biological investigation: general aspects. J. Geophys. Res. 82: 4677-4680.ADSCrossRefGoogle Scholar
  44. Klein, H.P. 1978. The Viking biological experiments on Mars. Icarus 34: 666-674.ADSCrossRefGoogle Scholar
  45. Klein, H.P. 1999. Did Viking discover life on Mars? Orig. Life Evol. Biosph. 29: 625-631.ADSCrossRefGoogle Scholar
  46. Kminek, G., and J.L. Bada. 2006. The effect of ionizing radiation on the preserva-tion of amino acids on Mars. Earth Planet. Sci. Lett. 245: 1-5.ADSCrossRefGoogle Scholar
  47. Leshin, L.A., K.D. McKeegan, P.K. Carpenter, et al. 1998. Oxygen isotopic constraints on the genesis of carbonates from martian meteorite ALH84001 - evidence from stable isotopes and mineralogy. Geochim. Cosmochim. Acta 62: 3-13.ADSCrossRefGoogle Scholar
  48. Levin, G.V. 1998. The future search for life on Mars: an unambiguous Martian life detection experiment. Workshop on the Issue of Martian Meteorites. Lunar and Planetary Institute, Houston, Texas.Google Scholar
  49. Levin, G.V., and P.A. Straat. 1977. Recent results from the Viking Labeled Release Experiment on Mars. J. Geophys. Res. 82: 4663-4667.ADSCrossRefGoogle Scholar
  50. Levin, G.V., and P.A. Straat. 1981. A search for a nonbiological explanation of the Viking Labeled Release Life Detection Experiment. Icarus 45: 494-516.ADSCrossRefGoogle Scholar
  51. Levin, G.V. and P.A. Straat. 2016. The case for extant life on Mars and its possible detection by the Viking Labeled Release Experiment. Astrobiology 16: 798-810.ADSCrossRefGoogle Scholar
  52. Lipps, J.H., G. Delory, J. Pitman, and S. Rieboldt. 2004. Astrobiology of Jupiter’s icy moons. SPIE USE 2: 5555-5510.Google Scholar
  53. Liu, S., Y. Zhao, J.W. Parks, D. Deamer, A.R. Hawkins, et al. 2014. Correlated electrical and optical analysis of single nanoparticles and biomolecules on a nanopore-gated optofluidic chip. Nano Lett. 14: 4816–4820.ADSCrossRefGoogle Scholar
  54. Long, D.A. 2002. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley and Sons Ltd, Chichester, U.K.Google Scholar
  55. MacKenzie, A.S., S.C. Brassell, G. Eglinton, et al. 1982. Chemical fossils: the geological fate of steroids. Science 217: 491-504.ADSCrossRefGoogle Scholar
  56. Mancinelli, R.L. 1989. Peroxides and the survivability of microorganisms on the surface of Mars. Adv. Space Res. 9: 6191-6195.CrossRefGoogle Scholar
  57. McKay, D.S., K.G. Everett, K.L. Thomas-Keprta, et al. 1996. Search for past life on Mars: possible relic biogenic activity in Martian Meteorite ALH84001. Science 273: 924-930.ADSCrossRefGoogle Scholar
  58. McKay, D.S., S.J. Clemett, K.L. Thoomas-Keprta, et al. 2006. Analysis of in situ carbonaceous matter in martian meteorite Nakhla. Astrobiology 6: 184.Google Scholar
  59. Mittlefehldt, D.W. 1994. ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan. Meteoritics 29: 214-221.ADSCrossRefGoogle Scholar
  60. Miura, Y.N., K. Nagao, N. Sugiura, et al. 1995. Orthopyroxenite ALH84001 and shergottite ALH77005: Additional evidence for a martian origin from noble gases. Geochim. Cosmochim. Acta 59: 2105-2113.ADSCrossRefGoogle Scholar
  61. Morris, R. V., S. W. Ruff, R. Gellert, D. W. Ming, et al. 2010. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329: 421-424.ADSCrossRefGoogle Scholar
  62. Navarro-González, R., K.F. Navarro, J. de la Rosa, E. Iñiguez, P. Molina, et al. 2006. The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc. Natl. Acad. Sci. USA 103: 16089-16094.ADSCrossRefGoogle Scholar
  63. Navarro-González, R., E. Vargas, J. de la Rosa, A.C. Raga, and C.P. McKay. 2010. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. JGR-Planets 115: E12, doi: Scholar
  64. Nussinov, M.D., Y.B. Chernyak and J.L. Ettinger. 1978. Model of the fine-grain component of martian soil based on Viking lander data. Nature 274: 859-861.ADSCrossRefGoogle Scholar
  65. Ojha, L., M.-B. Wilhelm, S.L. Murchie, A.S. McEwen, J.J. Wray, et al. 2015. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geosci. 8: 829-832.ADSCrossRefGoogle Scholar
  66. Oyama, V.I. 1972. The gas exchange experiment for life detection: the Viking Mars lander. Icarus 16: 167-184.ADSCrossRefGoogle Scholar
  67. Oyama, V.I., and B.J. Berdahl. 1977. The Viking gas exchange experiment results from Chryse and Utopia surface samples. J. Geophys. Res. 82: 4669-4676.ADSCrossRefGoogle Scholar
  68. Oyama, V.I., B.J. Berdahl and G.C. Carle. 1977. Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry. Nature 265: 110-114.ADSCrossRefGoogle Scholar
  69. Parnell, J., D. Cullen, M.R. Sims, S. Bowden, C.S. Cockell, et al. 2007. Searching for life on Mars: selection of molecular targets for ESA’s Aurora ExoMars mission. Astrobiology 7: 578-604.ADSCrossRefGoogle Scholar
  70. Parro, V., G. de Diego-Castilla, J.A. Rodriguez-Manfredi, L.A. Rivas, Y. Blanco-Lopez, et al. 2011. SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11: 15-28.ADSCrossRefGoogle Scholar
  71. Peters, K.E., C.C. Walters and J.M. Moldowan. 2004. The Biomarker Guide, Vol. 1. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  72. Pitman, J., A. Duncan, D. Stubbs, R. Sigler, R. Kendrick, et al. 2004. Planetary remote sensing science enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor). abstract #1454. 35th Lunar and Planetary Science Conference, Houston, Texas.Google Scholar
  73. Quinn, R.C., and A.P. Zent. 1999. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants. Orig. Life Evol. Biosph. 29: 59-72.ADSCrossRefGoogle Scholar
  74. Romanek, C.S., M.M. Grady, I.P. Wright, et al. 2002. Record of fluid-rock interactions on Mars from meteorite ALH84001. Nature 372: 655-657.ADSCrossRefGoogle Scholar
  75. Ryan, C.S., and I. Kleinberg. 1995. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch. Oral. Biol. 40: 753-763.CrossRefGoogle Scholar
  76. Schieber, J., and H.J. Arnott. 2003. Nannobacteria as a by-product of enzyme-driven tissue decay Geology 31: 717-720.Google Scholar
  77. Schopf, J.W. 1993. Microfossils of the early Archean Apex Chert; new evidence of the antiquity of life. Science 260: 640-645.ADSCrossRefGoogle Scholar
  78. Schulze-Makuch, D., C. Turse, J.M. Houtkooper, et al. 2008. Testing the H2O2-H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix Lander. Astrobiology 8: 205-214.ADSCrossRefGoogle Scholar
  79. Schulze-Makuch, D., J.N. Head, J.M. Houtkooper, M. Knoblauch, R. Furfaro, et al. 2012b. The Biological Oxidant and Life Detection (BOLD) Mission: a proposal for a mission to Mars. Planet. Space Sci. 67: 57-69.ADSCrossRefGoogle Scholar
  80. Schulze-Makuch, D., A.G. Fairén, A. Davila. 2013a. Locally targeted ecosynthesis: a proactive in situ search for extant life on other worlds. Astrobiology 13: 774-778.CrossRefGoogle Scholar
  81. Schulze-Makuch, D., J. Rummel, S. Benner, G. Levin, V. Parro, et. al. 2015b. Nearly forty years after Viking: Are we ready for a new life detection mission? Astrobiology 15: 413-419.ADSCrossRefGoogle Scholar
  82. Steele, A., D.S. McKay, C.C. Allen, K. Thomas-Keprta, D. Warmflash, et al. 2001. Mars Immunoassay Life Detection Instrument for Astrobiology (MILDI). 32nd Lunar and Planetary Science Conference, abstract # 1684, Houston, Texas.Google Scholar
  83. Stoker, C.R., and M.A. Bullock. 1997. Organic degradation under simulated Martian conditions. J. Geophys. Res. 102: 10881-10888.ADSCrossRefGoogle Scholar
  84. Storm, A.J., C. Storm, J. Chen, H. Zandbergen, J.F. Joanny, et al. 2005. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5: 1193–1197.ADSCrossRefGoogle Scholar
  85. Tanenbaum, S.W. 1956. The metabolism of Acetobacter peroxidans. I. Oxidative enzymes. Biochim. Biophys. Acta 21: 335-342.CrossRefGoogle Scholar
  86. Tang, B.L. 2007. A case for immunological approaches in detection and investigation of alien life. Int. J. of Astrobiology 6: 11-17.ADSCrossRefGoogle Scholar
  87. Thomas-Keprta, K.L., D.A. Bazylinski, J.L. Kirschvink, et al. 2000. Elon-gated prismatic magnetite crystals in ALH84001 carbonate globules: potential martian magnetofossils. Geochim. Cosmochim. Acta 64: 4049-4081.ADSCrossRefGoogle Scholar
  88. Thomas-Keprta, K.L., S.J. Clemett, D.A. Bazylinski, et al. 2001. Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc. Natl. Acad. Sci. USA 98: 2164-2169.ADSCrossRefGoogle Scholar
  89. Thomas-Keprta, K.L., S.J. Clemett, D.A. Bazylinski, et al. 2002. Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl. Environ. Microbiol. 68: 3663-3672.CrossRefGoogle Scholar
  90. Torrella, F., and R.J. Morita. 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl. Environ. Microbiol. 41: 518-527.Google Scholar
  91. Valley, J.W., J.M. Eiler, C.M. Graham, et al. 1997. Low-temperature carbonate concretions in the martian meteorite ALH84001: evidence from stable isotopes and mineralogy. Science 275: 1633-1638.ADSCrossRefGoogle Scholar
  92. Vercoutere, W., S. Winters-Hilt, H. Olsen, D.W. Deamer, D. Haussler, et al. 2001. Rapid discrimination among individual DNA molecules at single nucleotide resolution using a nanopore instrument. Nature Biotech. 19: 248-250.CrossRefGoogle Scholar
  93. Wallis, J.N., C. Wickramasinghe, D.H. Wallis, N. Miyake, M.K. Wallis, et al. 2012. Possible biological structures in the Tissint Mars meteorite. Proc. SPIE 8521, Instruments, Methods, and Missions for Astrobiology XV, 852110R.Google Scholar
  94. Warren, P.H. 1998. Petrologic evidence for low-temperature, possibly flood-evaporitic origin of carbonates in the ALH84001 meteorite. JGR-Planets 103: 98E01544.CrossRefGoogle Scholar
  95. Weiss, B.P., S. Sam Kim, J.L. Kirschvink, et al. 2004. Magnetic tests for magnetosome chains in martian meteorite ALH84001. Proc. Natl. Acad. Sci. USA 101: 8281-8284.ADSCrossRefGoogle Scholar
  96. Wettergreen, D., N. Cabrol, V. Baskaran, F. Calderón, S. Heys, et al. 2005. Second experiments in the robotic investigation of life in the Atacama desert in Chile. Proceedings of the ISAIRAS Conference, Munich, Germany.Google Scholar
  97. Yen, A.S., S.S. Kim, M.H. Hecht, et al. 2000. Evidence that the reactivity of the martian soil is due to superoxide ions. Science 289: 1909-1912.ADSCrossRefGoogle Scholar
  98. Zent, A.P., and C.P. McKay. 1994. The chemical reactivity of the martian soil and implications for future missions. Icarus 108: 146-157.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dirk Schulze-Makuch
    • 1
  • Louis N. Irwin
    • 2
  1. 1.Center for Astronomy and AstrophysicsTechnical University BerlinBerlinGermany
  2. 2.University of Texas at El PasoEl PasoUSA

Personalised recommendations