Skip to main content

Oral Biofilms: From Development to Assessment and Treatment

  • Chapter
  • First Online:
Dental Applications of Nanotechnology

Abstract

For years, microbiologists and infectious disease specialists have considered bacteria to be simple, independent, free-floating, single-cell living organisms. Based on this view, many of the strategies for controlling infections in human body have used laboratory models of free-floating microbes. In the past decade, however, scientists and clinicians have found that bacteria in natural environments often live in highly organized communities and have the ability to participate in a rudimentary form of communication. These communities are called biofilms . Oral biofilms are functionally and structurally organized polymicrobial communities that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. These biofilms are found naturally in health and provide benefits to the host. However, this relationship can break down, and disease can occur; disease is associated with a shift in the balance of the species within these biofilms. One promising approach to combating these biofilms is based on nanotechnology-tailored agents. Nanotechnology is the field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Strategies to control caries could include inhibition of biofilm development (e.g., prevention of attachment of cariogenic bacteria, manipulation of cell signalling mechanisms, delivery of effective antimicrobials, etc.), or enhancement of the host defenses. Additionally, these more conventional approaches could be augmented by interference with the factors that enable the cariogenic bacteria to escape from the normal homeostatic mechanisms that restrict their growth in plaque and out compete the organisms associated with health. Nanotechnology application includes the use of quantum dots for labelling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms . The future also comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem. This chapter is aimed at providing an understanding of the biofilm architecture within the oral cavity and predominantly focuses on recent research on the creation, characterization, and evaluation of nanoparticles for the prevention or treatment of biofilms in the oral cavity .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881

    Google Scholar 

  2. Jones HC, Roth IL, Saunders WM III (1969) Electron microscopic study of a slime layer. J Bacteriol 99:316–325

    Google Scholar 

  3. Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238:86–95

    CAS  Google Scholar 

  4. Characklis WG, McFeters GA, Marshall KC (1990) Physiological ecology in biofilm systems. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 341–394

    Google Scholar 

  5. Pringle JH, Fletcher M (1983) Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol 45:811–817

    CAS  Google Scholar 

  6. Bendinger B, Rijnaarts HHM, Altendorf K, Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977

    Google Scholar 

  7. Loeb GI, Neihof RA (1975) Marine conditioning films. Adv Chem 145:319–335

    CAS  Google Scholar 

  8. Rijnaarts HH, Norde W, Bouwer EJ, Lyklema J, Zehnder AJ (1993) Bacterial adhesion under static and dynamic conditions. Appl Environ Microbiol 59:3255–3265

    CAS  Google Scholar 

  9. Becker P, Hufnagle W, Peters G, Herrmann M (2001) Detection of different gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using micro-representational-difference analysis. Appl Environ Microbiol 67:2958–2965

    CAS  Google Scholar 

  10. Lewandowski Z (2000) Structure and function of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 1–17

    Google Scholar 

  11. Flemming H-C, Wingender J, Griegbe, Mayer C (2000) Physico-chemical properties of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 19–34

    Google Scholar 

  12. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    CAS  Google Scholar 

  13. Hussain M, Wilcox MH, White PJ (1993) The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol Rev 104:191–208

    CAS  Google Scholar 

  14. Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190(13):4447–4452

    CAS  Google Scholar 

  15. Jakubovics NS, Kolenbrander PE (2010) The road to ruin: the formation of disease-associated oral biofilms. Oral Dis 16(8):729–739

    CAS  Google Scholar 

  16. Marsh PD (1991) The significance of maintaining the stability of the natural microflora of the mouth. Br Dent J 171(6):174

    CAS  Google Scholar 

  17. Sanz M, Beighton D, Curtis MA, Cury JA, Dige I, Dommisch H, Ellwood R, Giacaman R, Herrera D, Herzberg MC, Könönen E (2017) Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J Clin Periodontol 44(S18)

    Google Scholar 

  18. Hajishengallis G (2014) Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol 35(1):3–11

    CAS  Google Scholar 

  19. Sanz M, Serrano J, Iniesta M, Cruz IS, Herrera D et al (2013) Monographs in oral science, vol 23. Karger, Basel (Toothpastes)

    Google Scholar 

  20. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491

    CAS  Google Scholar 

  21. Wilson M (1996) Susceptibility of oral bacterial biofilms to antimicrobial agents. J Med Microbiol 44:79–87

    CAS  Google Scholar 

  22. Kasimanickam RK, Ranjan A, Asokan GV, Kasimanickam VR, Kastelic JP (2013) Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int J Nanomedicine. 18:2809–2819

    Google Scholar 

  23. Sun LM, Zhang CL, Li P (2012) Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J Agric Food Chem 60:6150–6156

    CAS  Google Scholar 

  24. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P et al (2009) Understanding bio physicochemical interactions at the nano-biointerface. Nat Mater 8:543–557

    CAS  Google Scholar 

  25. de Paz LE, Sedgley CM, Kishen A (eds) (2015) The root canal biofilm. Springer

    Google Scholar 

  26. Berney M, Hammes F, Bosshard F, Weilenmann H-U, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73(10):3283–3290

    CAS  Google Scholar 

  27. Welch K, Cai Y, Strømme M (2012) A method for quantitative determination of biofilm viability. J Funct Biomater 3(2):418–431

    CAS  Google Scholar 

  28. Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72(2):157–165

    CAS  Google Scholar 

  29. Melo MA, Guedes SF, Xu HH, Rodrigues LK (2013) Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol 31:459–467

    CAS  Google Scholar 

  30. Giersten E (2004) Effects of mouth rinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque invivo. Caries Res 38:430–435

    Google Scholar 

  31. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    CAS  Google Scholar 

  32. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G et al (2005) Copper nanoparticle/ polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    CAS  Google Scholar 

  33. Li Z, Lee D, Sheng X, Cohen RE, Rubner MF (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823

    CAS  Google Scholar 

  34. Lee WF, Tsao KT (2006) Preparation and properties of nano composite hydrogels containing silver nano particles by ex situ polymerization. J Appl Poly Sci 1003653–1003661

    Google Scholar 

  35. Verran J, Sandoval G, Allen NS, Edge M, Stratton J (2007) Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dyes Pigm 73:298–304

    CAS  Google Scholar 

  36. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H et al (2007) Silver nano particles: partial oxidation and anti-bacterial activities. J Biol Inorg Chem 12:527–534

    CAS  Google Scholar 

  37. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    CAS  Google Scholar 

  38. Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    CAS  Google Scholar 

  39. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    CAS  Google Scholar 

  40. Seil TS, Websters TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Inter J Nanomed 7:2767–2781

    Google Scholar 

  41. Santoro CM, Duchsherer NL, Grainger DW (2007) Minimal in vitro antimicrobial efficacy and ocular cell toxicity from silver nanoparticles. NanoBiotechnology 3:55–65

    CAS  Google Scholar 

  42. Asharani PV, Lian WuY, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:102–255

    Google Scholar 

  43. Damm C, Münstedt H (2008) Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites. Appl Phys A Mater Sci Process 91:479–486

    CAS  Google Scholar 

  44. Xu X-HN, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ (2004) Real time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:10400–10413

    CAS  Google Scholar 

  45. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park JK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol 3:95–101

    CAS  Google Scholar 

  46. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    CAS  Google Scholar 

  47. Khan AU (2012) Medicine at nanoscale: a new horizon. Int J Nanomedicine 7:2997–2998

    Google Scholar 

  48. Katarzyna M, Anna MG, Krystyna IW (2013) Silver nanoparticles as an alternative strategy against bacterial Biofilms. Acta Biochim Pol 60(4):523–530

    Google Scholar 

  49. Fabrega J, Renshaw JC, Lead JR (2009) Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol 43:9004–9009

    CAS  Google Scholar 

  50. Kalishwaralal K, Barath Mani Kanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B 79:340–344

    CAS  Google Scholar 

  51. Martinez-Gutierrez F, Boegli L, Agostinho A, Sánchez EM, Bach H, Ruiz F, James G (2013) Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29:651–660

    CAS  Google Scholar 

  52. Islam MS, Larimer C, Ojha A, Nettleship I (2013) Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C Mater Biol Appl 33:4575–4581

    CAS  Google Scholar 

  53. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B 102:300–306

    CAS  Google Scholar 

  54. Hartmann T, Mühling M, Wolf A, Mariana F, Maskow T, Mertens F, Neu TR, Lerchner J (2013) A chip-calorimetric approach to the analysis of Ag nanoparticle caused inhibition and inactivation of beads-grown bacterial biofilms. J Microbiol Methods 95:129–137

    CAS  Google Scholar 

  55. Yoon KY, Byeon JH, Park JH, Hwang J et al (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Tot Environ 373:572–575

    CAS  Google Scholar 

  56. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    CAS  Google Scholar 

  57. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(20):133–149

    Google Scholar 

  58. Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small Weinh Bergstr Ger 8(19):3016–3027

    CAS  Google Scholar 

  59. Durmus NG, Taylor EN, Kummer KM, Webster TJ (2013) Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv Mater 25(40):5706–5713

    CAS  Google Scholar 

  60. Salunke GR, Ghosh S, Santosh Kumar R (2014) Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbagozeylanica and their application in biofilm control. Int J Nanomed 9:2635–2653

    Google Scholar 

  61. Ramasamy M, Lee J-H, Lee J (2016) Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. J Biomater Appl 31(3):366–378

    CAS  Google Scholar 

  62. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    CAS  Google Scholar 

  63. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromn C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(50):505701

    CAS  Google Scholar 

  64. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    CAS  Google Scholar 

  65. Murthy PS, Venugopalan V, Das DA, Dhara S, Pandiyan R, Tyagi A (2011) Antibiofilm activity of nano sized CuO. In: Proceedings of the International Conference on Nanoscience, Engineering and Technology, pp 580–583

    Google Scholar 

  66. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    CAS  Google Scholar 

  67. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultra fine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    CAS  Google Scholar 

  68. Zhang LL, Jiang YH, Ding YL, Povey M, York D (2007) Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nano fluids). J Nanopart Res 9:479–489

    Google Scholar 

  69. Fukui H, Horie M, Endoh S, Kato H, Fujita K, Nishio K, Komaba Lk, Maru J, Miyauhi A, Nakamura A, Kinugasa S, Yoshida Y, Hagihara Y, Iwahashi H (2012) Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact 198:29–37

    CAS  Google Scholar 

  70. Eshed M, Lellouche J, Matalon S, Gedanken A, Banin E (2012) Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 28:12288–12295

    CAS  Google Scholar 

  71. Liu Y, He L, Mustapha A, Li H, Hu Zq, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201

    CAS  Google Scholar 

  72. Sandstead HH (1995) Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 61(Suppl):621S–624S

    CAS  Google Scholar 

  73. Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP (2012) Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents 40:135–139

    CAS  Google Scholar 

  74. Khan ST, Ahmad M, Al-Khedhairy AA, Musarrat J (2013) Biocidal effect of copper and zinc oxide nanoparticles on human oral microbiome and biofilm formation. Mater Lett 97:67–70

    Google Scholar 

  75. Khan ST, Ahamed M, Alhadlaq HA, Musarrat J, Al-Khedhairy AA (2013b) Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces. Arch Oral Biol 58:1804–1811

    CAS  Google Scholar 

  76. Yu JX, Li TH (2011) Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings. Cell Biosci 1:19

    Google Scholar 

  77. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71

    CAS  Google Scholar 

  78. Fang M, Chen JH, Xu XL, Yang PH, Hildebr HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517

    CAS  Google Scholar 

  79. Takatsuka T, Tanaka K, Iijima Y (2005) Inhibition of dentine demineralization by zinc oxide: in vitro and in situ studies. Dent Mater 21:1170–1177

    CAS  Google Scholar 

  80. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world. J Nanopart Res 14:1109–1120

    Google Scholar 

  81. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Google Scholar 

  82. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Jacoby WA, Huang J (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 28:1–50

    CAS  Google Scholar 

  83. Rajakumar G, Rahuman AA, Roopan SM et al (2012) Fungus mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A 91:23–29

    CAS  Google Scholar 

  84. Kuhn KP, Cahberny IF, Massholder K et al (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53:71–77

    CAS  Google Scholar 

  85. Kumar A, Pandey AK, Singh SS, Shanker R, DhawanA (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1888

    CAS  Google Scholar 

  86. Tsuang YH, Sun JS, Huang YC et al (2008) Studies of photo killing of bacteria using titanium dioxide nanoparticles. Artif Organs 32:167–174

    CAS  Google Scholar 

  87. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    CAS  Google Scholar 

  88. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I et al (2010) Nanoparticles activate the NLR pyrindoma in containing3 (NIrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci USA 107:19449–19454

    CAS  Google Scholar 

  89. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4:1457–1465

    CAS  Google Scholar 

  90. Seo HJ, Mitsuhashi K, Tanibe H (1992) In: Brine CJ, Sandford PA, Zikakis JP (eds) Advances in Chitin and Chitosan. Elsevier Applied Science, New York, pp 34–40

    Google Scholar 

  91. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of Chitosan. Food Biotechnol 6(3):257–272

    CAS  Google Scholar 

  92. Kim C (1997) Synthesis and antibacterial activity of water-soluble Chitin derivatives. Polym Adv Technol 8:319–325

    CAS  Google Scholar 

  93. Kishen A, Shi Z, Shrestha A, Neoh KG (2008) An investigation on the antibacterial and anti biofilm efficacy of cationic nanoparticulates for root canal infection. J Endod 34:1515–1520

    Google Scholar 

  94. Fang FC (1997) Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818–2825

    CAS  Google Scholar 

  95. Lancaster JR Jr (1997) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1:18–30

    CAS  Google Scholar 

  96. Xu K, Wang JX, Kang XL, Chen JF (2009) Fabrication of antibacterial monodispersed Ag-SiO2 core-shell nanoparticles with high concentration. Mater Lett 63:31–33

    CAS  Google Scholar 

  97. Wang J-X, Wen L-X, Wang Z-H, Chen J-F (2006) Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater Chem Phys 96:90–97

    CAS  Google Scholar 

  98. Michels H, Wilks S, Noyce J, Keevil C (2005) Copper alloys for human infectious disease control. Stainless Steel 77000(27):20

    Google Scholar 

  99. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110:24923–24928

    CAS  Google Scholar 

  100. Kar M, Vijayakumar PS, Prasad BLV, Gupta SS (2010) Synthesis and characterization of poly- L-lysine-grafted silica nanoparticles synthesized via NCA polymerization and click chemistry. Langmuir 26:5772–5781

    CAS  Google Scholar 

  101. Makarovsky I, Boguslavsky Y, Alesker M, Lellouche J, Banin E, Lellouche J-P (2011) Novel triclosan-bound hybrid-silica nanoparticles and their enhanced antimicrobial properties. Adv Funct Mater 21:4295–4304

    CAS  Google Scholar 

  102. Botequim D, Maia J, Lino MMF, Lopes LMF, Simoes PN, Ilharco LM, Ferreira L (2012) Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. Langmuir 28:7646–7656

    CAS  Google Scholar 

  103. Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311

    CAS  Google Scholar 

  104. Allan I, Newman H, Wilson M (2001) Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria. Biomaterials 22:1683–1687

    CAS  Google Scholar 

  105. Zehnder M, Luder HU, Schätzle M, Kerosuo E, Waltimo T (2006) A comparative study on the disinfection potentials of bioactive glass S53P4 and calcium hydroxide in contra-lateral human premolars ex vivo. Int Endod J 39:952–958

    CAS  Google Scholar 

  106. Cabal B, Malpartida F, Torrecillas R, Hoppe A, Boccaccini AR, Moya JS (2011) The development of bioactive glass-ceramic substrates with biocide activity. Adv Eng Mater 13:B462–B466

    Google Scholar 

  107. Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757

    CAS  Google Scholar 

  108. Allison RR, Moghissi K (2013) Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc 46:24–29

    Google Scholar 

  109. Dai T, Huang Y-Y, Hamblin MR (2009) Photodynamic therapy for localized infections—state of the art. Photodiagn Photodyn Ther 6:170–188

    CAS  Google Scholar 

  110. Haag PA, Steiger-Ronay V, Schmidlin PR (2015) The in vitro antimicrobial efficacy of PDT against periodontopathogenic bacteria. Int J Mol Sci 16:27327–27338

    CAS  Google Scholar 

  111. Ogura M, Abernethy AD, Blissett R, Ruggiero K, Som S, Goodson J, Kent R, Doukas A, Soukos NS (2007) Photomechanical wave-assisted molecular delivery in oral biofilms. World J Microbiol Biotechnol 23:1637–1646

    CAS  Google Scholar 

  112. Müller P, Guggenheim B, Schmidlin PR (2007) Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro. Eur J Oral Sci 115:77–80

    Google Scholar 

  113. Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J (2013) Innovative strategies to overcome biofilm resistance. Biomed Res Int 2013:13

    Google Scholar 

  114. Shiha M-H, Huang F-C (2013) Repetitive methylene blue-mediated photoantimicrobial chemotherapy changes the susceptibility and expression of the outer membrane proteins of Pseudomonas aeruginosa. Photodiagn Photodyn Ther 10:664–671

    Google Scholar 

  115. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    CAS  Google Scholar 

  116. Koo YEL, Fan W, Hah H, Xu H, Orringer D, Ross B, Rehemtulla A, Philbert MA, Kopelman R (2007) Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy. Appl Opt 46:1924–1930

    CAS  Google Scholar 

  117. Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, Foschi F, Dunham J, Skobe Z, Yamazaki H et al (2010) Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod 36:322–328

    Google Scholar 

  118. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloid Surf B 75:1–18

    CAS  Google Scholar 

  119. Sah E, Sahis H (2015) Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater 22. https://doi.org/10.1155/2015/794601

    Google Scholar 

  120. Haris Z, Khan AU (2017) Selenium nanoparticle enhanced photodynamic therapy against biofilm forming streptococcus mutans. Int J Life Sci Sci Res 3(5):1287–1294

    Google Scholar 

  121. Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X et al (2010) Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod 36(2):322–328

    Google Scholar 

  122. Britto RP, Muralidharan NP (2013) Contamination of dental waterline and its control measures. Asian J Pharm Clin Res 6:19–23

    Google Scholar 

  123. Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. ClinMicrobiol Rev 25:2–41

    CAS  Google Scholar 

  124. Porteous NB, Redding SW, Thompson EH, Grooters AM, De Hoog S, Sutton DA (2003) Isolation of an unusual fungus in treated dental unit waterlines. J Am Dent Assoc 134:853–858

    Google Scholar 

  125. Szymanska J, Sitkowska J, Dutkiewicz J (2008) Microbial contamination of dental unit waterlines. Ann Agric Environ Med 15:173–179

    Google Scholar 

  126. Gupta S, Behari J, Kesari K (2006) Low frequency ultrasonic treatment of sludge. Asian J Water Environ Pollut 3:101–105

    CAS  Google Scholar 

  127. Mamadou SD, Savage N (2005) Nanoparticles and water quality. J Nano Res 7:325–330

    Google Scholar 

  128. Zhou QX, Xiao JP, Wang WD (2006) Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. J Chromatogr A 1125:152–158

    CAS  Google Scholar 

  129. Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40:1855–1861

    CAS  Google Scholar 

  130. Yang K, Wang X, Zhu L, Xing B (2006) Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ Sci Technol 40:5804–5810

    CAS  Google Scholar 

  131. Gotovac S, Hattori Y, Noguchi D, Miyamoto J, Kanamaru M, Utsumi S et al (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. J Phys Chem B 110:16219–16224

    CAS  Google Scholar 

  132. Wang JX, Jiang DQ, Gu ZY, Yan XP (2006) Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A 1137:8–14

    CAS  Google Scholar 

  133. Peng XJ, Li YH, Luan ZK, Di ZC, Wang HY, Tian BH et al (2003) Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:761–766

    Google Scholar 

  134. Cai YQ, Cai YE, Mou SF, Lu YQ (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081:245–247

    CAS  Google Scholar 

  135. Chin CJ, Shih LC, Tsai HJ, Liu TK (2006) Adsorption of o-xylene and p-xylene from water by SWCNTs. J Hazard Mater B138:304–310

    Google Scholar 

  136. Lu C, Chung YL, Chang KF (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:1183–1189

    CAS  Google Scholar 

  137. Cai Y, Jiang G, Liu J, Zhou Q (2003) Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Anal Chem 75:2517–2521

    CAS  Google Scholar 

  138. Cai YQ, Jiang QB, Liu JF, Zhou QX (2003) Multi walled nano carbon tubules packed cartridge for the solid phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal Chim Acta 494:149–156

    CAS  Google Scholar 

  139. Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin YB, Terui N et al (2004) Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environ Sci Technol 38:6890–6896

    CAS  Google Scholar 

  140. Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3:417–433

    Google Scholar 

  141. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    CAS  Google Scholar 

  142. Sharma YC, Srivastava V, Singh VK, Kaul SN, Weng CH (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30:583–609

    CAS  Google Scholar 

  143. Crooks RM, Bradley K, Ishigami M, Zettl A (2001) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Acc Chem Res 34:181–190

    CAS  Google Scholar 

  144. Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. Sci Technol Adv Mater 8:47–59

    CAS  Google Scholar 

  145. Taurozzi JS, Tarabara VV (2007) Silver nanoparticle arrays on track etch membrane support as flow-through optical sensors for water quality control. Environ Eng Sci 24:122–137

    CAS  Google Scholar 

  146. Hilal N, Zoubi HL, Darwish NA, Mohammad AW, Arabi MA (2004) A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170:281–308

    CAS  Google Scholar 

  147. Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mater 3:610–614

    CAS  Google Scholar 

  148. Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MN (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9:244–271

    CAS  Google Scholar 

  149. Aragon M, Kottenstette R, Dwyer B, Aragon A, Everett R, Holub W et al (2007) Arsenic pilot plant operation and results. Sandia National Laboratories, Anthony, New Mexico

    Google Scholar 

  150. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    CAS  Google Scholar 

  151. Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR Jr (2000) A novel surfactant nanoemulsion with a unique non-irritant topical anti-microbial activity against bacteria enveloped viruses and fungi. Microbiol Res 156:1–7

    Google Scholar 

  152. Lee VA, Karthikeyan R, Rawls HR, Amaechi BT (2010) Anti-cariogenic effect of a cetylpyridinium chloride-containing nanoemulsion. J Dent 38:742–749

    CAS  Google Scholar 

  153. Ramalingam K, Frohlich NC, Lee VA (2013) Effect of nanoemulsion on dental unit waterline contamination. J Dent Sci 8:333–336

    Google Scholar 

  154. Lyon DY, Brown DA, Alvarez PJ (2008) Implications and potential applications of bactericidal fullerene water suspensions: Effect of nC(60) concentration, exposure conditions and shelf life. Water Sci Technol 57:1533–1538

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heeresh Shetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shetty, H., Gupta, P. (2018). Oral Biofilms: From Development to Assessment and Treatment. In: Chaughule, R. (eds) Dental Applications of Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-97634-1_12

Download citation

Publish with us

Policies and ethics