Skip to main content

Philosophical Problems of Quantum Mechanics

  • Chapter
  • First Online:
Scientific Philosophy
  • 760 Accesses

Abstract

Quantum mechanics refers to quantum systems and their environment. The theory does not include consciousness, human subjects, or detectors. The interaction of quantum systems with detectors is the subject of a different theory: quantum theory of measurement. Quantum systems have properties that are not classical. Sometimes they behave in a similar way to classical systems such as particles or waves, but they are neither of them. Other properties, such as spin, lepton number, or color, have no classical analogous. Entanglement is a property of quantum systems that are prepared in a certain state; this property holds as far as the system does not interact with other systems exchanging energy. Quantum mechanics is a realistic, non-local, deterministic, and probabilistic theory of microphysical objects. Its dynamical equations are lineal, and hence the state functions of quantum objects obey the Principle of Superposition. This results in a phenomenology that sometimes strongly differs from what we know from classical physics and common sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Hilbert space is an abstract vector space possessing the structure of an inner product that allows lengths and angles to be measured. Hilbert spaces are complete in the sense that there are enough limits in the space to allow the techniques of calculus to be used.

  2. 2.

    In this definition the symbol ∗ designates the conjugate-complex of the wave function.

  3. 3.

    I use an informal notation (with the risk of committing language abuses) instead of exact logical notation that would obscure the physics of the problem. Some unusual symbols and their meaning: \(\hat {=}\) (“…represents…”), ∕ (“…such that…”), \(\tilde {=}\) (“…isomorphic to…”).

  4. 4.

    For the sake of simplicity I am ignoring here space and time. I will discuss in detail the ontological status of space and time, and spacetime, in the next chapter.

  5. 5.

    In particular, \(\overline {{\sigma }}_{0}\) denotes the empty environment, \(<\sigma ,\overline {\sigma }_{0}>\) denotes a free q-system, and \(<\sigma _{0},\overline {\sigma } _{0}>\) denotes the vacuum.

  6. 6.

    Non-Local causation is discussed, for instance, by Romero and Pérez (2012).

References

  • Aspect, A., Grangier, P., & Roger, G. (1981). Experimental tests of realistic local theories via Bell’s Theorem. Physical Review Letters, 47, 460–463.

    Article  ADS  Google Scholar 

  • Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell’s Inequalities using time-varying analyzers. Physical Review Letters, 49, 1804–1807.

    Article  ADS  MathSciNet  Google Scholar 

  • Bargmann, V. (1954). On unitary ray representations of continuous groups. Annals of Mathematics, 59, 1–46.

    Article  MathSciNet  Google Scholar 

  • Bohm, D. (1953). Quantum theory. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Bell, J.S. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38, 447–452.

    Article  ADS  MathSciNet  Google Scholar 

  • Bunge, M. (1956). Survey of the interpretations of quantum mechanics. American Journal of Physics, 24(4), 272–286.

    Article  ADS  MathSciNet  Google Scholar 

  • Bunge, M. (1967a). Foundations of physics. New York: Springer.

    Book  Google Scholar 

  • Bunge, M. (1967b). A ghost-free axiomatization of quantum mechanics. In M. Bunge (Ed.), Quantum theory and reality. Berlin: Springer.

    Chapter  Google Scholar 

  • Bunge, M. (1973). Philosophy of physics. Dordrecht: D. Reidel.

    Book  Google Scholar 

  • Bunge, M. (1974a). Treatise on basic philosophy. Vol. 1: Sense and reference. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Bunge, M. (1974b). Treatise on basic philosophy. Vol. 2: Interpretation and truth. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Bunge, M. (2010). Matter and mind. Heidelberg: Springer.

    Book  Google Scholar 

  • Clauser, J., & Shimony, A. (1978). Bell’s theorem. Experimental tests and implications. Reports on Progress in Physics, 41, 1881–1927.

    Article  ADS  Google Scholar 

  • de Gosson, M. A. (2014). Born-Jordan quantization and the equivalence of the Schrödinger and Heisenberg pictures. Foundations of Physics, 44, 1096–1106.

    Article  ADS  MathSciNet  Google Scholar 

  • Eckart, C. (1926). Operator calculus and the solution of the equation of quantum dynamics. Physics Reviews, 28, 711–726.

    Article  ADS  Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physics Reviews, 47, 777–780.

    Article  ADS  Google Scholar 

  • Gel’fand, I. M., & Shilov, G. E. (1967). Generalized functions (Vol. 3). New York: Academic Press.

    MATH  Google Scholar 

  • Hamermesh, M. (1960). Galilean invariance and the Schrödinger equation. Annals of Physics, 9, 518–521.

    Article  ADS  MathSciNet  Google Scholar 

  • Inönu, E., & Wigner, E. P. (1953). On the contraction of groups and their representations. Proceedings of the National Academy of Sciences of the United States of America, 39(6), 510–524.

    Article  ADS  MathSciNet  Google Scholar 

  • Jammer, M. (1974). The philosophy of quantum mechanics: The interpretations of quantum mechanics in historical perspective. New York: Wiley.

    Google Scholar 

  • Lèvy-Leblond, J. M. (1963). Galilei group and non-relativistic quantum mechanics. Journal of Mathematical Physics, 4, 776–788.

    Article  ADS  MathSciNet  Google Scholar 

  • López Armengol, F., Romero, G. E. (2017). Interpretation misunderstandings about elementary quantum mechanics. Metatheoria, 7(2), 55–60.

    Google Scholar 

  • Maudlin, T. (1994). Quantum nonlocality and relativity. Oxford: Blackwell.

    Google Scholar 

  • Muller, F. A. (1997a). The equivalence myth of quantum mechanics. Part I. Studies in History and Philosophy of Modern Physics, 28(1), 35–61.

    Article  ADS  MathSciNet  Google Scholar 

  • Muller, F. A. (1997b). The equivalence myth of quantum mechanics. Part II. Studies in History and Philosophy of Modern Physics, 28(2), 219–241.

    Article  ADS  MathSciNet  Google Scholar 

  • Perez-Bergliaffa, S. E., Romero, G. E., & Vucetich, H. (1993). Axiomatic foundations of nonrelativistic quantum mechanics: A realistic approach. International Journal of Theoretical Physics, 32, 1507–1522.

    Article  ADS  MathSciNet  Google Scholar 

  • Perez-Bergliaffa, S. E., Romero, G. E., & Vucetich, H. (1996). Axiomatic foundations of quantum mechanics revisited: The case for systems. International Journal of Theoretical Physics, 35, 1805–1819.

    Article  ADS  MathSciNet  Google Scholar 

  • Romero, G. E., & Pérez, D. (2012). New remarks on the cosmological argument. International Journal for Philosophy of Religion, 72(2), 103–113.

    Article  Google Scholar 

  • Schlosshauer, M. A. (2007). Decoherence and the quantum-to-classical transition. Berlin: Springer.

    Google Scholar 

  • Schrödinger, E. (1926). Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen. Annals of Physics, 79, 734–756.

    Article  Google Scholar 

  • von Neumann, J. (1955). (Original 1932), Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romero, G.E. (2018). Philosophical Problems of Quantum Mechanics. In: Scientific Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-97631-0_8

Download citation

Publish with us

Policies and ethics