Skip to main content

Learning Hierarchical Integration of Foveal and Peripheral Vision for Vergence Control by Active Efficient Coding

  • Conference paper
  • First Online:
From Animals to Animats 15 (SAB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10994))

Included in the following conference series:

Abstract

The active efficient coding (AEC) framework parsimoniously explains the joint development of visual processing and eye movements, e.g., the emergence of binocular disparity selective neurons and fusional vergence, the disjunctive eye movements that align left and right eye images. Vergence can be driven by information in both the fovea and periphery, which play complementary roles. The high resolution fovea can drive precise short range movements. The lower resolution periphery supports coarser long range movements. The fovea and periphery may also contain conflicting information, e.g. due to objects at different depths. While past AEC models did integrate peripheral and foveal information, they did not explicitly take into account these characteristics. We propose here a two-level hierarchical approach that does. The bottom level generates different vergence actions from foveal and peripheral regions. The top level selects one. We demonstrate that the hierarchical approach performs better than prior approaches in realistic environments, exhibiting better alignment and less oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohzawa, I., DeAngelis, G., Freeman, R.: Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249(4972), 1037–1041 (1990)

    Article  Google Scholar 

  2. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cats striate cortex. J. Physiol. 148(3), 574–591 (1959)

    Article  Google Scholar 

  3. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cats visual cortex. J. Physiol. 160(1), 106–154 (1962)

    Article  Google Scholar 

  4. Freeman, J., Simoncelli, E.P.: Metamers of the ventral stream. Nat. Neurosci. 14(9), 1195–1201 (2011)

    Article  Google Scholar 

  5. Henriksson, L., Nurminen, L., Hyvarinen, A., Vanni, S., Hyvarinen, A.: Spatial frequency tuning in human retinotopic visual areas. J. Vision 8(10), 1–13 (2008)

    Article  Google Scholar 

  6. Rawlings, S.C., Shipley, T.: Stereoscopic acuity and horizontal angular distance from fixation. J. Opt. Soc. Am. 59(8), 991–993 (1969)

    Article  Google Scholar 

  7. Antona, B., Barrio, A., Barra, F., Gonzalez, E., Sanchez, I.: Repeatability and agreement in the measurement of horizontal fusional vergences. Ophthalmic Physiol. Opt. 28(5), 475–491 (2008)

    Article  Google Scholar 

  8. Stevenson, S.B., Reed, P.E., Yang, J.: The effect of target size and eccentricity on reflex disparity vergence. Vision. Res. 39(4), 823–832 (1999)

    Article  Google Scholar 

  9. Siebert, J., Wilson, D.: Foveated vergence and stereo. In: Proceedings of the 3rd International Conference on Visual Search (1992)

    Google Scholar 

  10. Westelius, C., Knutsson, H., Wiklund, J., et al.: 11. Phase-Based Disparity Estimation. Vision Process Basic Res. Comput. Vision Syst. 10 (1995)

    Google Scholar 

  11. Gibaldi, A., Chessa, M., Canessa, A., et al.: A cortical model for binocular vergence control without explicit calculation of disparity. Neurocomputing 73, 1065–1073 (2010)

    Article  Google Scholar 

  12. Zhang, X., Tay, L.P.: Binocular vergence control using disparity energy neurons. J. Exp. Theor. Artif. Intell. 23, 201–222 (2011)

    Article  Google Scholar 

  13. Piater, J. H., Grupen, R. A., Ramamritham, K.: Learning real-time stereo vergence control. In: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, pp. 272–277. IEEE (1999)

    Google Scholar 

  14. Gibaldi, A., Canessa, A., Chessa, M., et al.: How a population-based representation of binocular visual signal can intrinsically mediate autonomous learning of vergence control. Procedia Comput. Sci. 13, 212–221 (2012)

    Article  Google Scholar 

  15. Gibaldi, A., Canessa, A., Solari, F., et al.: Autonomous learning of disparity-vergence behavior through distributed coding and population reward: basic mechanisms and real-world conditioning on a robot stereo head. Robot. Autonom. Syst. 71, 23–34 (2015)

    Article  Google Scholar 

  16. Barlow, H.: Possible principles underlying the transformations of sensory messages. Sens. Commun. 6(2), 57–58 (1961)

    Google Scholar 

  17. Blattler, F., Hahnloser, R.H.R.: An efficient coding hypothesis links sparsity and selectivity of neural responses. PLoS ONE 6(10), e25506 (2011)

    Article  Google Scholar 

  18. Franz, A., Triesch, J.: Emergence of disparity tuning during the development of vergence eye movements. In: IEEE 6th International Conference on Development and Learning, pp. 31–36. IEEE (2007)

    Google Scholar 

  19. Sun, W., Shi, B. E.: Joint development of disparity tuning and vergence control. In: IEEE International Conference on Development and Learning (2011)

    Google Scholar 

  20. Zhao, Y., Rothkopf, C.A., Triesch, J., Shi, B.E.: A unified model of the joint development of disparity selectivity and vergence control. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics. IEEE (2012)

    Google Scholar 

  21. Lonini, L., Zhao, Y., Chandrashekhariah, P., Shi, B.E., Triesch, J.: Autonomous learning of active multi-scale binocular vision. In: 2013 IEEE 3rd Joint International Conference on Development and Learning and Epigenetic Robotics. IEEE (2013)

    Google Scholar 

  22. Lonini, L., Forestier, S., Teulire, C., et al.: Robust active binocular vision through intrinsically motivated learning. Front. Neurorobotics 7 (2013)

    Google Scholar 

  23. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artif. Intell. 112(1), 181–211 (1999)

    Article  MathSciNet  Google Scholar 

  24. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Disc. Event Dyn. Syst. 13(12), 341–379 (2003)

    Article  MathSciNet  Google Scholar 

  25. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artif. Intell. Res. 13, 227–303 (2000)

    Article  MathSciNet  Google Scholar 

  26. Chandrapala, T.N., Shi, B.E.: Learning Slowness in a Sparse Model of Invariant Feature Detection. Neural Comput. (2015)

    Article  Google Scholar 

  27. Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Incremental natural actor-critic algorithms. Automatica 45(11), 2471–2482 (2009)

    Article  MathSciNet  Google Scholar 

  28. Bruce, N.D.B., Tsotsos, J.K.: Saliency, attention, and visual search: an information theoretic approach. J. Vision 3(9), 1–24 (2009)

    Google Scholar 

  29. Martull, S., Peris, M., Fukui, K.: Realistic CG stereo image dataset with ground truth disparity maps. In: International Conference on Pattern Recognition, pp. 40–43 (2012)

    Google Scholar 

  30. Tanimoto, N., Takagi, M., Bando, T., Abe, H., Hasegawa, S., Usui, T., Zee, D.S.: Central and peripheral visual interactions in disparityinduced vergence eye movements: I. Spatial interaction. Invest. Ophthalmol. Vis. Sci. 45(4), 1132–1138 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council under Grant 16244416, the German Federal Ministry of Education and Research under Grants 01GQ1414 and 01EW1603A, the European Union’s Horizon 2020 Grant 713010, and the Quandt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram E. Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Triesch, J., Shi, B.E. (2018). Learning Hierarchical Integration of Foveal and Peripheral Vision for Vergence Control by Active Efficient Coding. In: Manoonpong, P., Larsen, J., Xiong, X., Hallam, J., Triesch, J. (eds) From Animals to Animats 15. SAB 2018. Lecture Notes in Computer Science(), vol 10994. Springer, Cham. https://doi.org/10.1007/978-3-319-97628-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97628-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97627-3

  • Online ISBN: 978-3-319-97628-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics