Advertisement

Towards Rich Motion Skills with the Lightweight Quadruped Robot Serval - A Design, Control and Experimental Study

  • Peter EckertEmail author
  • Anja E. M. Schmerbauch
  • Tomislav Horvat
  • Katja Söhnel
  • Martin S. Fischer
  • Hartmut Witte
  • Auke J. Ijspeert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10994)

Abstract

Bio-inspired robotic designs introducing and benefiting from morphological aspects present in animals allowed the generation of fast, robust and energy efficient locomotion. We used engineering tools and interdisciplinary knowledge transferred from biology to build low-cost robots able to achieve a certain level of versatility. Serval, a compliant quadruped robot with actuated spine and high range of motion in all joints was developed to address the question of what mechatronic complexity is needed to achieve rich motion skills. In our experiments, the robot presented a high level of versatility (number of skills) at medium speed, with a minimal control effort and, in this article, no usage of its spine. Implementing a basic kinematics-duplication from dogs, we found strengths to emphasize, weaknesses to correct and made Serval ready for future attempts to achieve more agile locomotion. In particular, we investigated the following skills: trot, bound (crouched), sidestep, turn with a radius, ascend slopes including flat ground transition, perform single and double step-downs, fall, trot over bumpy terrain, lie/sit down, and stand up.

Notes

Acknowledgements

We thank the “Bewegungslabor (OpenLab) der westfälischen Wilhelms Universität Münster”, especially Dr. Marc de Lussanet and Prof. Dr. Heiko Wagner. We wish to thank the owners of the dogs for providing the experimental subjects. This collaborative work was financially supported by the NCCR Robotics and gkf Gesellschaft für kynologische Forschung. We thank the editors and reviewers for their constructive criticism.

References

  1. 1.
    Eckert, P., Ijspeert, A.J.: Benchmarking agility for multi-legged terrestrial robots. IEEE Trans. Robot. 8 (2018, in progress)Google Scholar
  2. 2.
    Ajallooeian, M.: Pattern generation for rough terrain locomotion with quadrupedal robots. Ph.D. thesis, EPFL (2015)Google Scholar
  3. 3.
    Full, R.J., Koditschek, D.E., Full, R.J.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 2(12), 3–125 (1999)Google Scholar
  4. 4.
    Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014)CrossRefGoogle Scholar
  5. 5.
    Seok, S., Wang, A., Chuah, M.Y., Otten, D., Lang, J., Kim, S.: Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3307–3312. IEEE, May 2013Google Scholar
  6. 6.
    Park, H.W., Park, S., Kim, S.: Variable-speed quadrupedal bounding using impulse planning: untethered high-speed 3D running of MIT Cheetah 2. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 5163–5170, May–June 2015Google Scholar
  7. 7.
    Hutter, M.: ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot. Arbeitsberichte Verkehrs- und Raumplanung, IVT, ETH Zurich, vol. 544, pp. 1–25 (2009)Google Scholar
  8. 8.
    Hutter, M., Gehring, C., Höpflinger, M.A., Blösch, M., Siegwart, R.: Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Trans. Robot. 30(6), 1427–1440 (2014)CrossRefGoogle Scholar
  9. 9.
    Poulakakis, I., Smith, J.A., Buehler, M.: Modeling and experiments of untethered quadrupedal running with a bounding gait: the scout II robot. Int. J. Robot. Res. 24(4), 239–256 (2005)CrossRefGoogle Scholar
  10. 10.
    Pusey, J.L., Duperret, J.M., Haynes, G.C., Knopf, R., Koditschek, D.E.: Free-standing leaping experiments with a power-autonomous elastic-spined quadruped. In: SPIE Defense, Security, and Sensing, vol. 8741, p. 87410W (2013)Google Scholar
  11. 11.
    Kimura, H., Fukuoka, Y., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int. J. Robot. Res. 26(5), 475–490 (2007)CrossRefGoogle Scholar
  12. 12.
    Fukuoka, Y., Kimura, H.: Dynamic locomotion of a biomorphic quadruped Tekken robot using various gaits: walk, trot, free-gait and bound. Appl. Bionics Biomech. 6(1), 63–71 (2009)CrossRefGoogle Scholar
  13. 13.
    Iida, F., Pfeifer, R.: Cheap rapid locomotion of a quadruped robot: self-stabilization of bounding gait. In: Proceedings of the 8th International Conference on Intelligent Autonomous Systems (IAS-8), vol. 8, pp. 642–649 (2004)Google Scholar
  14. 14.
    Iida, F., Gómez, G., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: Proceedings of 2005 International Conference on Advanced Robotics, ICAR 2005, vol. 2005, pp. 229–235. IEEE (2005)Google Scholar
  15. 15.
    Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A.J.: Towards dynamic trot gait locomotion: design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32(8), 932–950 (2013)CrossRefGoogle Scholar
  16. 16.
    Khoramshahi, M., Sprowitz, A., Tuleu, A., Ahmadabadi, M.N., Ijspeert, A.J.: Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3329–3334 (2013)Google Scholar
  17. 17.
    Sprowitz, A.T., et al.: Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs. Front. Robot. AI 5, 67 (2018)CrossRefGoogle Scholar
  18. 18.
    Eckert, P., Sprowitz, A., Witte, H., Ijspeert, A.J.: Comparing the effect of different spine and leg designs for a small bounding quadruped robot. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2015, pp. 3128–3133, June 2015Google Scholar
  19. 19.
    Weinmeister, K., Eckert, P., Witte, H., Ijspeert, A.J.: Cheetah-cub-S: steering of a quadruped robot using trunk motion. In: 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6 (2015)Google Scholar
  20. 20.
    Witte, H., et al.: Transfer of biological principles into the construction of quadruped walking machines. In: Proceedings of the 2nd International Workshop on Robot Motion and Control, RoMoCo 2001, pp. 245–249 (2001)Google Scholar
  21. 21.
    Söhnel, K., Andrada, E., De Lussanet, M.H.E., Wagner, H., Fischer, M.S.: Kinetics in Jumping Regarding Agility Dogs (2017)Google Scholar
  22. 22.
    Tuleu, A.: Hardware, software and control design considerations towards low-cost compliant quadruped robots. Ph.D. thesis, EPFL (2016)Google Scholar
  23. 23.
    Horvat, T., Karakasiliotis, K., Melo, K., Fleury, L., Thandiackal, R., Ijspeert, A.J.: Inverse kinematics and reflex based controller for body-limb coordination of a salamander-like robot walking on uneven terrain. In: IEEE International Conference on Intelligent Robots and Systems, vol. 2015, pp. 195–201. IEEE, September–December 2015Google Scholar
  24. 24.
    Smith, J.L., Carlson-Kuhta, P., Trank, T.V.: Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking. J. Neurophysiol. 79(4), 1702–1716 (1998)CrossRefGoogle Scholar
  25. 25.
    Schmerbauch, A.E.M., Eckert, P., Witte, H., Ijspeert, A.J.: Implementation and analysis of rich locomotion behavior on the bio-inspired, quadruped robot Serval (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Peter Eckert
    • 1
    Email author
  • Anja E. M. Schmerbauch
    • 1
    • 2
  • Tomislav Horvat
    • 1
  • Katja Söhnel
    • 3
  • Martin S. Fischer
    • 3
  • Hartmut Witte
    • 2
  • Auke J. Ijspeert
    • 1
  1. 1.Biorobotics LaboratoryÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Fachgebiet BiomechatronikTechnische Universität IlmenauIlmenauGermany
  3. 3.Institut für Zoologie und EvolutionsforschungFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations