Advertisement

Gait Transition Between Simple and Complex Locomotion in Humanoid Robots

  • Sidhdharthkumar Vaghani
  • Yuxiang Pan
  • Fred Hamker
  • John NassourEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10994)

Abstract

In this paper, we present the gait transition between rhythmic and non-rhythmic behaviors during walking of a humanoid robot Nao. In biological studies, two kinds of locomotion were observed in cat during walking on a flat terrain and on a ladder (simple and complex walking). Both behaviors were obtained on the robot thanks to the multi-layers multi-patterns central pattern generator model. We generate the rhythmic behavior from the non-rhythmic one based on the frequency of interaction between the robot feet and the ground surface during the complex locomotion. Although the complex locomotion requires a sequence of descending control signals to drive each robot step, the simple one requires only a triggering signal to generate the periodic movement. The overall system behavior fits with the biological findings in cat locomotion.

References

  1. 1.
    Shik, M.L., Orlovsky, G.N.: Neurophysiology of locomotor automatism. Physiol. Rev. 56(3), 465–501 (1976)CrossRefGoogle Scholar
  2. 2.
    Whelan, P.J.: Control of locomotion in the decerebrate cat. Prog. Neurobiol. 49(5), 481–515 (1996)CrossRefGoogle Scholar
  3. 3.
    Graham-Brown, T.: The intrinsic factors in the act of progression in the mammal. Proc. Royal Soc. B Biol. Sci. 84(572), 308–319 (1911)CrossRefGoogle Scholar
  4. 4.
    Schaal, S., Sternad, D., Osu, R., Kawato, M.: Rhythmic arm movement is not discrete. Nature Neurosci. 7(10), 1136–1143 (2004)CrossRefGoogle Scholar
  5. 5.
    Lefevre, P., Ronsse, R., Sternad, D.: A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput. 21(5), 1335–1370 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., Wörgötter, F.: Adaptive, fast walking in a biped robot under neuronal control and learning. PLOS Comput. Biol. 3(7), 1–16 (2007)CrossRefGoogle Scholar
  7. 7.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  8. 8.
    Nassour, J., Hénaff, P., Ben Ouezdou, F., Cheng, G.: A study of adaptive locomotive behaviors of a biped robot: patterns generation and classification. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 313–324. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15193-4_30CrossRefGoogle Scholar
  9. 9.
    Owaki, D., Ishiguro, A.: A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Sci. Rep. 7 (2017). Article no. 277Google Scholar
  10. 10.
    Danner, S.M., Shevtsova, N.A., Frigon, A., Rybak, I.A.: Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife 6, e31050 (2017)Google Scholar
  11. 11.
    Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)CrossRefGoogle Scholar
  12. 12.
    Marlinski, V., Nilaweera, W.U., Zelenin, P.V., Sirota, M.G., Beloozerova, I.N.: Signals from the ventrolateral thalamus to the motor cortex during locomotion. J. Neuro Physiol. 107(1), 455–472 (2011)Google Scholar
  13. 13.
    Rowat, P.F., Selverston, A.I.: Learning algorithms for oscillatory networks with gap junctions and membrane currents. Network 2(1), 17–41 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    McCrea, D.A., Rybak, I.A.: Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57(1), 134–146 (2008)CrossRefGoogle Scholar
  15. 15.
    Vukobratovic, M., Borovac, B.: Zero-moment point – thirty five years of its life. Int. J. Humanoid Rob. 1(1), 157–173 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sidhdharthkumar Vaghani
    • 1
  • Yuxiang Pan
    • 1
  • Fred Hamker
    • 1
  • John Nassour
    • 1
    Email author
  1. 1.Chemnitz University of TechnologyChemnitzGermany

Personalised recommendations