Advertisement

Deciphering Cardiovascular Genomics and How They Apply to Cardiovascular Disease Prevention

  • Sumeet A. Khetarpal
  • Kiran Musunuru
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Genomics, or the study of genomes, is concerned with understanding how the deoxyribonucleic acid (DNA) of which genomes are constituted contributes to making an organism unique. Accordingly, human genomics focuses on how DNA sequences produce individuals’ traits, e.g., skin color and cholesterol levels, and contribute to diseases, e.g., myocardial infarction and diabetes mellitus. The last decade has witnessed a remarkable leap forward in the use of genomics technology to understand human traits and diseases, to the point that new discoveries regarding what makes each person unique are being widely reported in the press and advertised by companies to the lay public. Although currently the clinical utility of genomics is limited, there are high expectations that it will become increasingly employed in practice in the near future. Discussions with patients of the implications of genomics – whether it is in the form of genetic testing for disease risk, pharmacogenomics, or personalized medicine – will be unavoidable for primary care providers. This chapter seeks to (1) explain the basic biology underlying genomics technology; (2) describe the current and potential future uses of genomics to improve patient care, particularly in cardiovascular medicine; and (3) set realistic expectations for the utility of genomics and explore the ethical implications of the technology.

Keywords

Genome-wide association studies Genomics Pharmacogenomics Polymorphism Risk prediction Whole-exome sequencing 

Recommended Reading

  1. 1.
    O’Donnell CJ, Nabel EG. Genomics of cardiovascular disease. N Engl J Med. 2011;365:2098–109.PubMedGoogle Scholar
  2. 2.
    Ganesh SK, Arnett DK, Assimes TL, et al. Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation. 2013;128:2813–51.PubMedGoogle Scholar
  3. 3.
    Musunuru K, Hickey KT, Al-Khatib SM, et al. Basic concepts and potential applications of genetics and genomics for cardiovascular and stroke clinicians: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2015;8:216–42.PubMedPubMedCentralGoogle Scholar

References

  1. 1.
    Musunuru K, Kathiresan S. HapMap and mapping genes for cardiovascular disease. Circ Cardiovasc Genet. 2008;1:66–71.Google Scholar
  2. 2.
    Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science (New York, NY). 2007;316:1491–3.PubMedGoogle Scholar
  3. 3.
    McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science (New York, NY). 2007;316:1488–91.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.PubMedGoogle Scholar
  6. 6.
    Lu X, Wang L, Chen S, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet. 2012;44:890–4.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.PubMedPubMedCentralGoogle Scholar
  8. 8.
    O'Donnell CJ, Kavousi M, Smith AV, et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124:2855–64.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Schunkert H, Konig IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333–8.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–7.PubMedGoogle Scholar
  11. 11.
    Benjamin EJ, Rice KM, Arking DE, et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009;41:879–81.PubMedPubMedCentralGoogle Scholar
  12. 12.
    den Hoed M, Eijgelsheim M, Esko T, et al. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat Genet. 2013;45:621–31.Google Scholar
  13. 13.
    Ellinor PT, Lunetta KL, Albert CM, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44:670–5.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ellinor PT, Lunetta KL, Glazer NL, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42:240–4.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Gudbjartsson DF, Holm H, Gretarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41:876–8.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Marcus GM, Alonso A, Peralta CA, et al. European ancestry as a risk factor for atrial fibrillation in African Americans. Circulation. 2010;122:2009–15.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sandhu MS, Waterworth DM, Debenham SL, et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet (London, England). 2008;371:483–91.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wallace C, Newhouse SJ, Braund P, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82:139–49.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Demirkan A, Amin N, Isaacs A, et al. Genetic architecture of circulating lipid levels. Eur J Hum Genet. 2011;19:813–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56–65.PubMedGoogle Scholar
  23. 23.
    Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Waterworth DM, Ricketts SL, Song K, et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol. 2010;30:2264–76.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science (New York, NY). 2007;316:1331–6.PubMedGoogle Scholar
  27. 27.
    Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science (New York, NY). 2007;316:1341–5.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science (New York, NY). 2007;316:1336–41.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;44:67–72.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Hara K, Fujita H, Johnson TA, et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet. 2014;23:239–46.PubMedGoogle Scholar
  32. 32.
    Kim YJ, Go MJ, Hu C, et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet. 2011;43:990–5.PubMedGoogle Scholar
  33. 33.
    Li H, Gan W, Lu L, et al. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes. 2013;62:291–8.PubMedGoogle Scholar
  34. 34.
    Ng MC, Shriner D, Chen BH, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10:e1004517.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Saxena R, Hivert MF, Langenberg C, et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet. 2010;42:142–8.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Saxena R, Saleheen D, Been LF, et al. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes. 2013;62:1746–55.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tabassum R, Chauhan G, Dwivedi OP, et al. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes. 2013;62:977–86.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098–102.PubMedGoogle Scholar
  39. 39.
    Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Williams AL, Jacobs SB, Moreno-Macias H, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506:97–101.PubMedGoogle Scholar
  41. 41.
    Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7.PubMedGoogle Scholar
  42. 42.
    Arking DE, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38:644–51.PubMedGoogle Scholar
  43. 43.
    Avery CL, Sethupathy P, Buyske S, et al. Fine-mapping and initial characterization of QT interval loci in African Americans. PLoS Genet. 2012;8:e1002870.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Newton-Cheh C, Eijgelsheim M, Rice KM, et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet. 2009;41:399–406.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Pfeufer A, Sanna S, Arking DE, et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet. 2009;41:407–14.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Smith JG, Avery CL, Evans DS, et al. Impact of ancestry and common genetic variants on QT interval in African Americans. Circ Cardiovasc Genet. 2012;5:647–55.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40:217–24.PubMedGoogle Scholar
  48. 48.
    Bown MJ, Jones GT, Harrison SC, et al. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1. Am J Hum Genet. 2011;89:619–27.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Bradley DT, Hughes AE, Badger SA, et al. A variant in LDLR is associated with abdominal aortic aneurysm. Circ Cardiovasc Genet. 2013;6:498–504.PubMedGoogle Scholar
  50. 50.
    Gretarsdottir S, Baas AF, Thorleifsson G, et al. Genome-wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm. Nat Genet. 2010;42:692–7.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jones GT, Bown MJ, Gretarsdottir S, et al. A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Hum Mol Genet. 2013;22:2941–7.PubMedPubMedCentralGoogle Scholar
  52. 52.
    van't Hof FN, Ruigrok YM, Lee CH, et al. Shared genetic risk factors of intracranial, abdominal, and thoracic aneurysms. J Am Heart Assoc. 2016;5  https://doi.org/10.1161/JAHA.115.002603.
  53. 53.
    Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med. 2008;359:789–99.PubMedGoogle Scholar
  54. 54.
    Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5:257–64.PubMedGoogle Scholar
  55. 55.
    Mangravite LM, Engelhardt BE, Medina MW, et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature. 2013;502:377–80.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Postmus I, Trompet S, Deshmukh HA, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Wahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2016;Google Scholar
  58. 58.
    Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Wilson KD, Shen P, Fung E, et al. A rapid, high-quality, cost-effective, comprehensive and expandable targeted next-generation sequencing assay for inherited heart diseases. Circ Res. 2015;117:603–11.PubMedPubMedCentralGoogle Scholar
  60. 60.
    van Spaendonck-Zwarts KY, Posafalvi A, van den Berg MP, et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur Heart J. 2014;35:2165–73.PubMedGoogle Scholar
  61. 61.
    Sadananda SN, Foo JN, Toh MT, et al. Targeted next-generation sequencing to diagnose disorders of HDL cholesterol. J Lipid Res. 2015;56:1993–2001.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Patel AP, Peloso GM, Pirruccello JP, et al. Targeted exonic sequencing of GWAS loci in the high extremes of the plasma lipids distribution. Atherosclerosis. 2016;250:63–8.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Lin H, Sinner MF, Brody JA, et al. Targeted sequencing in candidate genes for atrial fibrillation: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study. Heart Rhythm. 2014;11:452–7.PubMedGoogle Scholar
  64. 64.
    Futema M, Plagnol V, Whittall RA, Neil HA, Humphries SE. Use of targeted exome sequencing as a diagnostic tool for Familial Hypercholesterolaemia. J Med Genet. 2012;49:644–9.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Fokstuen S, Makrythanasis P, Nikolaev S, et al. Multiplex targeted high-throughput sequencing for Mendelian cardiac disorders. Clin Genet. 2014;85:365–70.PubMedGoogle Scholar
  66. 66.
    Fine PE, Gruer PJ, Maine N, Ponnighaus JM, Rees RJ, Stanford JL. Failure of Mycobacterium leprae soluble antigens to suppress delayed-type hypersensitivity reaction to tuberculin. Clin Exp Immunol. 1989;77:226–9.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Akinrinade O, Ollila L, Vattulainen S, et al. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur Heart J. 2015;36:2327–37.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Walsh R, Cook SA. Issues and challenges in diagnostic sequencing for inherited cardiac conditions. Clin Chem. 2016;63(1):116–28.PubMedGoogle Scholar
  69. 69.
    Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–7.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Proust C, Empana JP, Boutouyrie P, et al. Contribution of rare and common genetic variants to plasma lipid levels and carotid stiffness and geometry: a Substudy of the Paris Prospective Study 3. Circ Cardiovasc Genet. 2015;8:628–36.PubMedGoogle Scholar
  71. 71.
    Golbus JR, Stitziel NO, Zhao W, et al. Common and rare genetic variation in CCR2, CCR5, or CX3CR1 and risk of atherosclerotic coronary heart disease and glucometabolic traits. Circ Cardiovasc Genet. 2016;9:250–8.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Glessner JT, Bick AG, Ito K, et al. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 2014;115:884–96.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Peloso GM, Auer PL, Bis JC, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94:223–32.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46:352–6.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Holmen OL, Zhang H, Fan Y, et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet. 2014;46:345–51.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.PubMedGoogle Scholar
  77. 77.
    Cunningham D, Danley DE, Geoghegan KF, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14:413–9.PubMedGoogle Scholar
  78. 78.
    Pandit S, Wisniewski D, Santoro JC, et al. Functional analysis of sites within PCSK9 responsible for hypercholesterolemia. J Lipid Res. 2008;49:1333–43.PubMedGoogle Scholar
  79. 79.
    Naoumova RP, Tosi I, Patel D, et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler Thromb Vasc Biol. 2005;25:2654–60.PubMedGoogle Scholar
  80. 80.
    Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A. 2004;101:7100–5.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem. 2004;279:50630–8.PubMedGoogle Scholar
  82. 82.
    Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.PubMedGoogle Scholar
  83. 83.
    Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5.PubMedGoogle Scholar
  84. 84.
    Kathiresan S, Myocardial Infarction Genetics C. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med. 2008;358:2299–300.PubMedGoogle Scholar
  85. 85.
    McPherson R, Kavaslar N. Statins for primary prevention of coronary artery disease. Lancet (London, England). 2007;369:1078; author reply 1079.Google Scholar
  86. 86.
    Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367:1891–900.PubMedGoogle Scholar
  87. 87.
    Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366:1108–18.PubMedGoogle Scholar
  88. 88.
    Kastelein JJ, Ginsberg HN, Langslet G, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Sjouke B, Kusters DM, Kindt I, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J. 2015;36:560–5.PubMedGoogle Scholar
  90. 90.
    Raal FJ, Honarpour N, Blom DJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2015;385:341–50.PubMedGoogle Scholar
  91. 91.
    Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2015;385:331–40.PubMedGoogle Scholar
  92. 92.
    Stroes E, Colquhoun D, Sullivan D, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8.PubMedGoogle Scholar
  93. 93.
    Sabatine MS, Wasserman SM, Stein EA. PCSK9 inhibitors and cardiovascular events. N Engl J Med. 2015;373:774–5.PubMedGoogle Scholar
  94. 94.
    Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.PubMedGoogle Scholar
  95. 95.
    Everett BM, Smith RJ, Hiatt WR. Reducing LDL with PCSK9 inhibitors – the clinical benefit of lipid drugs. N Engl J Med. 2015;373:1588–91.PubMedGoogle Scholar
  96. 96.
    Do R, Stitziel NO, Won HH, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6.PubMedGoogle Scholar
  97. 97.
    Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.PubMedGoogle Scholar
  98. 98.
    Emdin CA, Khera AV, Natarajan P, et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol. 2016;68:2761–72.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet (London, England). 2014;384:618–25.PubMedGoogle Scholar
  100. 100.
    Rader DJ. New therapeutic approaches to the treatment of dyslipidemia. Cell Metab. 2016;23:405–12.PubMedGoogle Scholar
  101. 101.
    Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.PubMedGoogle Scholar
  102. 102.
    Kingwell BA, Chapman MJ, Kontush A, Miller NE. HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov. 2014;13:445–64.PubMedGoogle Scholar
  103. 103.
    Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.PubMedGoogle Scholar
  104. 104.
    Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.PubMedGoogle Scholar
  105. 105.
    Connelly MA, Parry TJ, Giardino EC, et al. Torcetrapib produces endothelial dysfunction independent of cholesteryl ester transfer protein inhibition. J Cardiovasc Pharmacol. 2010;55:459–68.PubMedGoogle Scholar
  106. 106.
    Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.PubMedGoogle Scholar
  107. 107.
    Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet (London, England). 2012;380:572–80.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Holmes MV, Asselbergs FW, Palmer TM, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36:539–50.PubMedGoogle Scholar
  109. 109.
    Haase CL, Tybjaerg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97:E248–56.PubMedGoogle Scholar
  110. 110.
    Zanoni P, Khetarpal SA, Larach DB, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science (New York, NY). 2016;351:1166–71.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Saleheen D, Scott R, Javad S, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3:507–13.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.Google Scholar
  114. 114.
    Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–52.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Stitziel NO, Stirrups KE, Masca NG, et al. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374:1134–44.PubMedGoogle Scholar
  116. 116.
    Pollin TI, Damcott CM, Shen H, et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science (New York, NY). 2008;322:1702–5.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Khetarpal SA, Qamar A, Millar JS, Rader DJ. Targeting ApoC-III to reduce coronary disease risk. Curr Atheroscler Rep. 2016;18:54.PubMedGoogle Scholar
  118. 118.
    Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41.PubMedGoogle Scholar
  119. 119.
    Dewey FE, Gusarova V, O'Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374:1123–33.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31.PubMedGoogle Scholar
  121. 121.
    Gaudet D, Brisson D, Tremblay K, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371:2200–6.PubMedGoogle Scholar
  122. 122.
    Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373:438–47.PubMedGoogle Scholar
  123. 123.
    Desai U, Lee EC, Chung K, et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Natl Acad Sci U S A. 2007;104:11766–71.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Wang Y, Gusarova V, Banfi S, Gromada J, Cohen JC, Hobbs HH. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res. 2015;56:1296–307.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Gusarova V, Alexa CA, Wang Y, et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res. 2015;56:1308–17.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Kathiresan S, Melander O, Anevski D, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358:1240–9.PubMedGoogle Scholar
  127. 127.
    Musunuru K, Kral BG, Blumenthal RS, et al. The use of high-sensitivity assays for C-reactive protein in clinical practice. Nat Clin Pract Cardiovasc Med. 2008;5:621–35.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Anderson JL, Horne BD, Stevens SM, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116:2563–70.PubMedGoogle Scholar
  129. 129.
    Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2008;83:460–70.PubMedGoogle Scholar
  130. 130.
    Collet JP, Hulot JS, Pena A, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet (London, England). 2009;373:309–17.PubMedGoogle Scholar
  131. 131.
    Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.PubMedGoogle Scholar
  132. 132.
    Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360:363–75.PubMedGoogle Scholar
  133. 133.
    Pare G, Mehta SR, Yusuf S, et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med. 2010;363:1704–14.PubMedGoogle Scholar
  134. 134.
    Wallentin L, James S, Storey RF, et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet (London, England). 2010;376:1320–8.PubMedGoogle Scholar
  135. 135.
    Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304:1821–30.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Holmes MV, Perel P, Shah T, Hingorani AD, Casas JP. CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA. 2011;306:2704–14.PubMedGoogle Scholar
  137. 137.
    Bauer T, Bouman HJ, van Werkum JW, Ford NF, ten Berg JM, Taubert D. Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ (Clinical research ed). 2011;343:d4588.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Doll JA, Neely ML, Roe MT, et al. Impact of CYP2C19 metabolizer status on patients with ACS treated with Prasugrel versus Clopidogrel. J Am Coll Cardiol. 2016;67:936–47.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sumeet A. Khetarpal
    • 1
  • Kiran Musunuru
    • 1
  1. 1.Departments of Medicine and Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations