Advertisement

Inflammatory Markers and Novel Risk Factors

  • Stephen J. Nicholls
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality in the Western world. The escalation in global prevalence of abdominal adiposity and its associated metabolic risk factors have fueled speculation that cardiovascular disease will become the leading cause of mortality worldwide by 2020 (Murray and Lopez, Lancet 349:1498–1504, 1997). Increasing interest has focused on the development of new systemic biomarkers to assist in the prediction of cardiovascular risk. This should facilitate more effective use of therapeutic strategies developed for cardiovascular prevention.

Keywords

C-reactive protein Interleukins Inflammation Lipoprotein-associated phospholipase A2 Myeloperoxidase 

References

  1. 1.
    Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997;349:1498–504.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Multiple Risk Factor Intervention Trial Research Group. Relationship between baseline risk factors and coronary heart disease and total mortality in the Multiple Risk Factor Intervention Trial. Prev Med. 1986;15:254–73.CrossRefGoogle Scholar
  3. 3.
    D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA. 2001;286:180–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Virani SS, Ballantyne CM. How to identify patients with vulnerable plaques. Diabetes Obes Metab. 2008;10:824–33.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Khot UN, Khot MB, Bajzer CT, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 2003;108:1930–2.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Du Clos TW. Function of C-reactive protein. Ann Med. 2000;32:274–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Danenberg HD, Szalai AJ, Swaminathan RV, et al. Increased thrombosis after arterial injury in human C-reactive protein-transgenic mice. Circulation. 2003;108:512–5.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pai JK, Pischon T, Ma J, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004;351:2599–610.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Pradhan AD, Manson JE, Rossouw JE, et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative Observational Study. JAMA. 2002;288:980–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation. 1998;98:731–3.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    de Winter RJ, Koch KT, van Straalen JP, et al. C-reactive protein and coronary events following percutaneous coronary angioplasty. Am J Med. 2003;115:85–90.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB. Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet. 1997;349:462–6.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during instability in coronary artery disease. N Engl J Med. 2000;343:1139–47.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med. 1994;331:417–24.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Milazzo D, Biasucci LM, Luciani N, et al. Elevated levels of C-reactive protein before coronary artery bypass grafting predict recurrence of ischemic events. Am J Cardiol. 1999;84:459–61.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Morrow DA, Rifai N, Antman EM, et al. C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. Thrombolysis in myocardial infarction. J Am Coll Cardiol. 1998;31:1460–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Retterstol L, Eikvar L, Bohn M, Bakken A, Erikssen J, Berg K. C-reactive protein predicts death in patients with previous premature myocardial infarction—a 10 year follow-up study. Atherosclerosis. 2002;160:433–40.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ridker PM, Rifai N, Pfeffer MA, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) investigators. Circulation. 1998;98:839–44.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Miller M, Zhan M, Havas S. High attributable risk of elevated C-reactive protein level to conventional coronary heart disease risk factors: the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2005;165:2063–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Pepys MB, Hawkins PN, Kahan MC, et al. Proinflammatory effects of bacterial recombinant human C-reactive protein are caused by contamination with bacterial products, not by C-reactive protein itself. Circ Res. 2005;97:e97–e103.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387–97.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease. Application to clinical and public health practice. A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499–511.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297:611–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Albert MA, Danielson E, Rifai N, Ridker PM. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA. 2001;286:64–70.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jialal I, Stein D, Balis D, Grundy SM, Adams-Huet B, Devaraj S. Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation. 2001;103:1933–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1999;100:230–5.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med. 2001;344:1959–65.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352:29–38.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352:20–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94:437–44.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99:2075–81.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 2001;158:879–91.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kutter D, Devaquet P, Vanderstocken G, Paulus JM, Marchal V, Gothot A. Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit? Acta Haematol. 2000;104:10–5.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Nikpoor B, Turecki G, Fournier C, Theroux P, Rouleau GA. A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in French-Canadians. Am Heart J. 2001;142:336–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Asselbergs FW, Reynolds WF, Cohen-Tervaert JW, Jessurun GA, Tio RA. Myeloperoxidase polymorphism related to cardiovascular events in coronary artery disease. Am J Med. 2004;116:429–30.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Exner M, Minar E, Mlekusch W, et al. Myeloperoxidase predicts progression of carotid stenosis in states of low high-density lipoprotein cholesterol. J Am Coll Cardiol. 2006;47:2212–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Meuwese MC, Stroes ES, Hazen SL, et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol. 2007;50:159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ndrepepa G, Braun S, Mehilli J, von Beckerath N, Schomig A, Kastrati A. Myeloperoxidase level in patients with stable coronary artery disease and acute coronary syndromes. Eur J Clin Investig. 2008;38:90–6.CrossRefGoogle Scholar
  46. 46.
    Duzguncinar O, Yavuz B, Hazirolan T, et al. Plasma myeloperoxidase is related to the severity of coronary artery disease. Acta Cardiol. 2008;63:147–52.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhang R, Brennan ML, Fu X, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001;286:2136–42.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349:1595–604.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Baldus S, Heeschen C, Meinertz T, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 2003;108:1440–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Morrow DA, Sabatine MS, Brennan ML, et al. Concurrent evaluation of novel cardiac biomarkers in acute coronary syndrome: myeloperoxidase and soluble CD40 ligand and the risk of recurrent ischaemic events in TACTICS-TIMI 18. Eur Heart J. 2008;29:1096–102.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Mocatta TJ, Pilbrow AP, Cameron VA, et al. Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol. 2007;49:1993–2000.PubMedCrossRefGoogle Scholar
  52. 52.
    Dominguez-Rodriguez A, Samimi-Fard S, Abreu-Gonzalez P, Garcia-Gonzalez MJ, Kaski JC. Prognostic value of admission myeloperoxidase levels in patients with ST-segment elevation myocardial infarction and cardiogenic shock. Am J Cardiol. 2008;101:1537–40.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ng LL, Pathik B, Loke IW, Squire IB, Davies JE. Myeloperoxidase and C-reactive protein augment the specificity of B-type natriuretic peptide in community screening for systolic heart failure. Am Heart J. 2006;152:94–101.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tang WH, Tong W, Troughton RW, et al. Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J Am Coll Cardiol. 2007;49:2364–70.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Askari AT, Brennan ML, Zhou X, et al. Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med. 2003;197:615–24.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Vasilyev N, Williams T, Brennan ML, et al. Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation. 2005;112:2812–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Lerman A, McConnell JP. Lipoprotein-associated phospholipase A2: a risk marker or a risk factor? Am J Cardiol. 2008;101:11F–22F.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Garza CA, Montori VM, McConnell JP, Somers VK, Kullo IJ, Lopez-Jimenez F. Association between lipoprotein-associated phospholipase A2 and cardiovascular disease: a systematic review. Mayo Clin Proc. 2007;82:159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Packard CJ, O’Reilly DS, Caslake MJ, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med. 2000;343:1148–55.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2004;109:837–42.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol. 2006;47:C19–31.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Brilakis ES, McConnell JP, Lennon RJ, Elesber AA, Meyer JG, Berger PB. Association of lipoprotein-associated phospholipase A2 levels with coronary artery disease risk factors, angiographic coronary artery disease, and major adverse events at follow-up. Eur Heart J. 2005;26:137–44.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ballantyne CM, Nambi V. Markers of inflammation and their clinical significance. Atheroscler Suppl. 2005;6:21–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Davidson MH, Stein EA, Bays HE, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29:1354–67.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Corson MA, Jones PH, Davidson MH. Review of the evidence for the clinical utility of lipoprotein-associated phospholipase A2 as a cardiovascular risk marker. Am J Cardiol. 2008;101:41F–50F.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Serruys PW, Garcia-Garcia HM, Buszman P, et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation. 2008;118:1172–82.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 1997;96:4219–25.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Luc G, Arveiler D, Evans A, et al. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and incident coronary heart disease: the PRIME Study. Atherosclerosis. 2003;170:169–76.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Malik I, Danesh J, Whincup P, et al. Soluble adhesion molecules and prediction of coronary heart disease: a prospective study and meta-analysis. Lancet. 2001;358:971–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Cipollone F, Marini M, Fazia M, Pini B, Iezzi A, Reale M, Paloscia L, Materazzo G, D’Annunzio E, Conti P, Chiarelli F, Cuccurullo F, Mezzetti A, et al. Elevated circulating levels of monocyte chemoattractant protein-1 in patients with restenosis after coronary angioplasty. Arterioscler Thromb Vasc Biol. 2001;21:327–34.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Deo R, Khera A, McGuire DK, et al. Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. J Am Coll Cardiol. 2004;44:1812–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Hoogeveen RC, Morrison A, Boerwinkle E, et al. Plasma MCP-1 level and risk for peripheral arterial disease and incident coronary heart disease: Atherosclerosis Risk in Communities Study. Atherosclerosis. 2005;183:301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Biasucci LM, Vitelli A, Liuzzo G, et al. Elevated levels of interleukin-6 in unstable angina. Circulation. 1996;94:874–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Dollery CM, Libby P. Atherosclerosis and proteinase activation. Cardiovasc Res. 2006;69:625–35.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Schoenhagen P, Vince DG, Ziada KM, et al. Relation of matrix-metalloproteinase 3 found in coronary lesion samples retrieved by directional coronary atherectomy to intravascular ultrasound observations on coronary remodeling. Am J Cardiol. 2002;89:1354–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Welsh P, Whincup PH, Papacosta O, et al. Serum matrix metalloproteinase-9 and coronary heart disease: a prospective study in middle-aged men. QJM. 2008;101:785–91.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tayebjee MH, Lip GY, MacFadyen RJ. Matrix metalloproteinases in coronary artery disease: clinical and therapeutic implications and pathological significance. Curr Med Chem. 2005;12:917–25.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001;345:1022–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Cooke JP. ADMA, its role in vascular disease. Vasc Med. 2005;10(Suppl 1):S11–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Nicholls SJ, Wang Z, Koeth R, et al. Metabolic profiling of arginine and nitric oxide pathways predicts hemodynamic abnormalities and mortality in patients with cardiogenic shock after acute myocardial infarction. Circulation. 2007;116:2315–24.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med. 1993;118:956–63.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Price MJ. Monitoring platelet function to reduce the risk of ischemic and bleeding complications. Am J Cardiol. 2009;103:35A–9A.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kinlay S, Schwartz GG, Olsson AG, et al. Effect of atorvastatin on risk of recurrent cardiovascular events after an acute coronary syndrome associated with high soluble CD40 ligand in the Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study. Circulation. 2004;110:386–91.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Marcucci R, Brogi D, Sofi F, et al. PAI-1 and homocysteine, but not lipoprotein (a) and thrombophilic polymorphisms, are independently associated with the occurrence of major adverse cardiac events after successful coronary stenting. Heart. 2006;92:377–81.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Humphrey LL, Fu R, Rogers K, Freeman M, Helfand M. Homocysteine level and coronary heart disease incidence: a systematic review and meta-analysis. Mayo Clin Proc. 2008;83:1203–12.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995;274:1049–57.CrossRefGoogle Scholar
  87. 87.
    Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA. 2002;288:2015–22.CrossRefGoogle Scholar
  88. 88.
    Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA. 1997;277:1775–81.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG. MTHFR. 677C—>T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA. 2002;288:2023–31.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Moustapha A, Naso A, Nahlawi M, et al. Prospective study of hyperhomocysteinemia as an adverse cardiovascular risk factor in end-stage renal disease. Circulation. 1998;97:138–41.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Soinio M, Marniemi J, Laakso M, Lehto S, Ronnemaa T. Elevated plasma homocysteine level is an independent predictor of coronary heart disease events in patients with type 2 diabetes mellitus. Ann Intern Med. 2004;140:94–100.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325:1202.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Antoniades C, Antonopoulos AS, Tousoulis D, Marinou K, Stefanadis C. Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur Heart J. 2009;30:6–15.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Januzzi JL Jr, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948–54.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Morita E, Yasue H, Yoshimura M, et al. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation. 1993;88:82–91.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    de Lemos JA, Morrow DA, Bentley JH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014–21.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Morrow DA, de Lemos JA, Sabatine MS, et al. Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol. 2003;41:1264–72.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Morrow DA, de Lemos JA, Blazing MA, et al. Prognostic value of serial B-type natriuretic peptide testing during follow-up of patients with unstable coronary artery disease. JAMA. 2005;294:2866–71.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Blazing MA, De Lemos JA, Dyke CK, Califf RM, Bilheimer D, Braunwald E. The A-to-Z Trial: methods and rationale for a single trial investigating combined use of low-molecular-weight heparin with the glycoprotein IIb/IIIa inhibitor tirofiban and defining the efficacy of early aggressive simvastatin therapy. Am Heart J. 2001;142:211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Jernberg T, Stridsberg M, Venge P, Lindahl B. N-terminal pro brain natriuretic peptide on admission for early risk stratification of patients with chest pain and no ST-segment elevation. J Am Coll Cardiol. 2002;40:437–45.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Omland T, Persson A, Ng L, et al. N-terminal pro-B-type natriuretic peptide and long-term mortality in acute coronary syndromes. Circulation. 2002;106:2913–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    James SK, Lindahl B, Siegbahn A, et al. N-terminal pro-brain natriuretic peptide and other risk markers for the separate prediction of mortality and subsequent myocardial infarction in patients with unstable coronary artery disease: a Global Utilization of Strategies to Open occluded arteries (GUSTO)-IV substudy. Circulation. 2003;108:275–81.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Sabatine MS, Morrow DA, de Lemos JA, et al. Acute changes in circulating natriuretic peptide levels in relation to myocardial ischemia. J Am Coll Cardiol. 2004;44:1988–95.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Weber M, Dill T, Arnold R, et al. N-terminal B-type natriuretic peptide predicts extent of coronary artery disease and ischemia in patients with stable angina pectoris. Am Heart J. 2004;148:612–20.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Sakai H, Tsutamoto T, Ishikawa C, et al. Direct comparison of brain natriuretic peptide (BNP) and N-terminal pro-BNP secretion and extent of coronary artery stenosis in patients with stable coronary artery disease. Circ J. 2007;71:499–505.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kim BS, Lee HJ, Shin HS, et al. Presence and severity of coronary artery disease and changes in B-type natriuretic peptide levels in patients with a normal systolic function. Transl Res. 2006;148:188–95.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Abdullah SM, Khera A, Das SR, et al. Relation of coronary atherosclerosis determined by electron beam computed tomography and plasma levels of n-terminal pro-brain natriuretic peptide in a multiethnic population-based sample (the Dallas Heart Study). Am J Cardiol. 2005;96:1284–9.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol. 2005;25:279–86.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Pratico D, Iuliano L, Mauriello A, et al. Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J Clin Invest. 1997;100:2028–34.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    De Caterina R, Cipollone F, Filardo FP, et al. Low-density lipoprotein level reduction by the 3-hydroxy-3-methylglutaryl coenzyme-A inhibitor simvastatin is accompanied by a related reduction of F2-isoprostane formation in hypercholesterolemic subjects: no further effect of vitamin E. Circulation. 2002;106:2543–9.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Desideri G, Croce G, Tucci M, et al. Effects of bezafibrate and simvastatin on endothelial activation and lipid peroxidation in hypercholesterolemia: evidence of different vascular protection by different lipid-lowering treatments. J Clin Endocrinol Metab. 2003;88:5341–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Ehara S, Ueda M, Naruko T, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001;103:1955–60.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Nishi K, Itabe H, Uno M, et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol. 2002;22:1649–54.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Nilsson J, Nordin Fredrikson G, Schiopu A, Shah PK, Jansson B, Carlsson R. Oxidized LDL antibodies in treatment and risk assessment of atherosclerosis and associated cardiovascular disease. Curr Pharm Des. 2007;13:1021–30.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Holvoet P, Kritchevsky SB, Tracy RP, et al. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes. 2004;53:1068–73.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Matsumoto T, Takashima H, Ohira N, et al. Plasma level of oxidized low-density lipoprotein is an independent determinant of coronary macrovasomotor and microvasomotor responses induced by bradykinin. J Am Coll Cardiol. 2004;44:451–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Hulthe J, Fagerberg B. Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arterioscler Thromb Vasc Biol. 2002;22:1162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Liu ML, Ylitalo K, Salonen R, Salonen JT, Taskinen MR. Circulating oxidized low-density lipoprotein and its association with carotid intima-media thickness in asymptomatic members of familial combined hyperlipidemia families. Arterioscler Thromb Vasc Biol. 2004;24:1492–7.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Choi SH, Chae A, Miller E, et al. Relationship between biomarkers of oxidized low-density lipoprotein, statin therapy, quantitative coronary angiography, and atheroma: volume observations from the REVERSAL (Reversal of Atherosclerosis with Aggressive Lipid Lowering) study. J Am Coll Cardiol. 2008;52:24–32.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 2001;103:926–33.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Mackness MI, Durrington PN, Mackness B. The role of paraoxonase 1 activity in cardiovascular disease: potential for therapeutic intervention. Am J Cardiovasc Drugs. 2004;4:211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Bhattacharyya T, Nicholls SJ, Topol EJ, et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. 2008;299:1265–76.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Keller T, Messow CM, Lubos E, et al. Cystatin C and cardiovascular mortality in patients with coronary artery disease and normal or mildly reduced kidney function: results from the AtheroGene study. Eur Heart J. 2009;30:314–20.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Pawlak K, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in hypertensive and normotensive patients with coronary artery disease. Nephrol (Carlton). 2008;13:153–6.CrossRefGoogle Scholar
  126. 126.
    Hemdahl AL, Gabrielsen A, Zhu C, et al. Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler Thromb Vasc Biol. 2006;26:136–42.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Poniatowski B, Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in patients with chronic heart failure and coronary artery disease. Kidney Blood Press Res. 2009;32:77–80.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355:2631–9.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Zethelius B, Berglund L, Sundstrom J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358:2107–16.CrossRefPubMedGoogle Scholar
  130. 130.
    Shlipak MG, Ix JH, Bibbins-Domingo K, Lin F, Whooley MA. Biomarkers to predict recurrent cardiovascular disease: the Heart and Soul Study. Am J Med. 2008;121:50–7.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Libby P, Pasterkampm G. Requiem for the ‘vulnerable plaque’. Eur Heart J. 2015;36:2984–7.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Kataoka Y, Puri R, Hammadah M, Duggal B, Uno K, Kapadia SR, Tuzcu EM, Nissen SE, King P, Nicholls SJ. Sex differences in nonculprit coronary plaque microstructures on frequency-domain optical coherence tomography in acute coronary syndromes and stable coronary artery disease. Circ Cardiovasc Imag. 2016;9:e004506.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineCenter for Cardiovascular Diagnostics and Prevention, Heart and Vascular Institute, Cleveland Clinic FoundationClevelandUSA

Personalised recommendations