Advertisement

Management of Dyslipidemia

  • Peter P. TothEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

In the United States, 790,000 people sustain a myocardial infarction annually or one every 40 s (Mozaffarian et al. Circulation 131:e29–322, 2015). Of these, 114,000 will be fatal. Atherosclerosis is a complex, multifactorial disease. Over the course of the past five decades, numerous prospective observational cohort studies have established beyond any doubt that risk for atherosclerotic disease is driven by a number of risk factors, which include dyslipidemia, hypertension, insulin resistance and diabetes mellitus, obesity, cigarette smoking, and age (Stamler et al. JAMA 256:2823–2828, 1986; Castelli Can J Cardiol 4:5A–10A, 1988; Assmann et al. Eur Heart J 19:A2–11, 1998; Goldbourt et al. Br Med J Clin Res Ed 290:1239–1243, 1985; Verschuren et al. JAMA 274:131–136, 1995). The greater the burden of risk factors, the higher the likelihood for developing such manifestations of atherosclerosis as coronary artery disease (CAD), carotid artery disease, and peripheral arterial disease. Atherosclerotic disease is unequivocally associated with increased risk for myocardial infarction, stroke, renal artery disease and renal insufficiency, claudication and lower extremity amputation, and death. Progressive accumulation of lipid in arterial walls resulting in luminal obstruction is a cardinal structural manifestation of atherosclerotic disease. Arresting this process of lipid infiltration and retention is an important goal in modern cardiovascular medicine. Dyslipidemia is highly prevalent in the United States (Toth et al. J Clin Lipidol 6:325–330, 2012). Even when patients are treated, they tend to be undertreated leaving them with significant residual risk for developing atherosclerotic disease and sustaining both primary and secondary acute cardiovascular events (Toth Resid Staff Physician 53:s1–s7, 2007; Punekar et al. Clin Cardiol 38: 483–491, 2015; Punekar et al. Curr Med Res Opin 33:869–876, 2017).

Keywords

Apoprotein Atherosclerotic cardiovascular disease Cholesterol Chylomicron Fibrate Lipoproteins Remnant lipoprotein Triglyceride Statin 

References

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.Google Scholar
  2. 2.
    Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 1986;256:2823–8.CrossRefGoogle Scholar
  3. 3.
    Castelli WP. Cholesterol and lipids in the risk of coronary artery disease--the Framingham Heart Study. Can J Cardiol. 1988;4(Suppl A):5A–10A.Google Scholar
  4. 4.
    Assmann G, Cullen P, Schulte H. The Munster Heart Study (PROCAM). Results of follow-up at 8 years. Eur Heart J. 1998;19(Suppl A):A2–11.Google Scholar
  5. 5.
    Goldbourt U, Holtzman E, Neufeld HN. Total and high density lipoprotein cholesterol in the serum and risk of mortality: evidence of a threshold effect. Br Med J (Clin Res Ed). 1985;290:1239–43.CrossRefGoogle Scholar
  6. 6.
    Verschuren WM, Jacobs DR, Bloemberg BP, et al. Serum total cholesterol and long-term coronary heart disease mortality in different cultures. Twenty-five-year follow-up of the seven countries study. JAMA. 1995;274:131–6.CrossRefGoogle Scholar
  7. 7.
    Toth PP, Potter D, Ming EE. Prevalence of lipid abnormalities in the United States: the National Health and Nutrition Examination Survey 2003–2006. J Clin Lipidol. 2012;6:325–30.CrossRefGoogle Scholar
  8. 8.
    Toth PP. Why do patients at highest CV risk receive the least treatment? The danger of doing too little. Resident & Staff Phys. 2007;53:s1–7.Google Scholar
  9. 9.
    Punekar RS, Fox KM, Richhariya A, et al. Burden of First and Recurrent Cardiovascular Events Among Patients With Hyperlipidemia. Clin Cardiol. 2015;38:483–91.CrossRefGoogle Scholar
  10. 10.
    Punekar RS, Fox KM, Paoli CJ, et al. Lipid-lowering treatment modifications among patients with hyperlipidemia and a prior cardiovascular event: a US retrospective cohort study. Curr Med Res Opin. 2017;33:869–76.CrossRefPubMedGoogle Scholar
  11. 11.
  12. 12.
    Libby P. What have we learned about the biology of atherosclerosis? The role of inflammation. Am J Cardiol. 2001;88:3J–6J.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Libby P, Nahrendorf M, Swirski FK. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “Cardiovascular Continuum”. J Am Coll Cardiol. 2016;67:1091–103.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Libby P. Atherosclerosis: the new view. Sci Am. 2002;286:46–55.CrossRefPubMedGoogle Scholar
  15. 15.
    Libby P, Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med. 2002;8:1257–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Toth PP, Barter PJ, Rosenson RS, et al. High-density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7:484–525.CrossRefGoogle Scholar
  17. 17.
    Toth PP, Gotto AM. High-density lipoprotein cholesterol. In: Comprehensive management of high risk cardiovascular patients. New York: Informa Healthcare; 2006. p. 295.CrossRefGoogle Scholar
  18. 18.
    Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995;36:211–28.Google Scholar
  19. 19.
    Navab M, Anantharamaiah GM, Reddy ST, et al. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation. 2004;109:3215–20.CrossRefGoogle Scholar
  20. 20.
    Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation. 2006;113:2548–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Vaisar T. Proteomics investigations of HDL: challenges and promise. Curr Vasc Pharmacol. 2012;10:410–21.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res. 2013;54:2575–85.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37:2999–3058.CrossRefPubMedGoogle Scholar
  24. 24.
    Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S1–45.CrossRefGoogle Scholar
  25. 25.
    Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115:450–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Stauffer ME, Weisenfluh L, Morrison A. Association between triglycerides and cardiovascular events in primary populations: a meta-regression analysis and synthesis of evidence. Vas Health Risk Manag. 2013;9:671–80.CrossRefGoogle Scholar
  27. 27.
    Liu J, Zeng F-F, Liu Z-M, Zhang C-X, Ling W-h, Chen Y-M. Effects of blood triglycerides on cardiovascular and all-cause mortality: a systematic review and meta-analysis of 61 prospective studies. Lipids Health Dis. 2013;12:159.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Miller M, Cannon CP, Murphy SA, Qin J, Ray KK, Braunwald E. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51:724–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Toth PP. Epicardial steatosis, insulin resistance, and coronary artery disease. Heart Fail Clin. 2012;8:671–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Rashid N, Sharma PP, Scott RD, Lin KJ, Toth PP. All-cause and acute pancreatitis health care costs in patients with severe hypertriglyceridemia. Pancreas. 2017;46:57–63.CrossRefGoogle Scholar
  31. 31.
    Rashid N, Sharma PP, Scott RD, Lin KJ, Toth PP. Severe hypertriglyceridemia and factors associated with acute pancreatitis in an integrated health care system. J Clin Lipidol. 2016;10:880–90.CrossRefGoogle Scholar
  32. 32.
    Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation. 1979;60:473–85.CrossRefGoogle Scholar
  33. 33.
    Varbo A, Benn M, Tybjaerg-Hansen A, Nordestgaard BG. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128:1298–309.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61:427–36.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Joshi PH, Khokhar AA, Massaro JM, et al. Remnant lipoprotein cholesterol and incident coronary heart disease: the Jackson heart and Framingham offspring cohort studies. J Am Heart Assoc. 2016;5:e002765.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Boekholdt SM, Arsenault BJ, Mora S, et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA. 2012;307:1302–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Davidson MH, Ballantyne CM, Jacobson TA, et al. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol. 2011;5:338–67.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sniderman AD, Toth PP, Thanassoulis G, Furberg CD. An evidence-based analysis of the National Lipid Association recommendations concerning non-HDL-C and apoB. J Clin Lipidol. 2016;10:1248–58.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cromwell WC, Otvos JD. Low-density lipoprotein particle number and risk for cardiovascular disease. Curr Atheroscler Rep. 2004;6:381–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mora S, Szklo M, Otvos JD, et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2006;192(1):211–7.CrossRefGoogle Scholar
  41. 41.
    Sniderman A, Williams K, de Graaf J. Non-HDL C equals apolipoprotein B: except when it does not! Curr Opin Lipidol. 2010;21:518–24.CrossRefGoogle Scholar
  42. 42.
    Grundy SM. United States cholesterol guidelines 2001: expanded scope of intensive low-density lipoprotein-lowering therapy. Am J Cardiol. 2001;88:23J–7J.CrossRefGoogle Scholar
  43. 43.
    D'Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117:743–53.CrossRefGoogle Scholar
  44. 44.
    Hobbs FD, Jukema JW, Da Silva PM, McCormack T, Catapano AL. Barriers to cardiovascular disease risk scoring and primary prevention in Europe. QJM. 2010;103:727–39.CrossRefGoogle Scholar
  45. 45.
    Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2935–59.CrossRefGoogle Scholar
  46. 46.
    Lloyd-Jones DM, Morris PB, Ballantyne CM, et al. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2016;68:92–125.CrossRefGoogle Scholar
  47. 47.
    West of Scotland Coronary Prevention Study Group. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation. 1998;97:1440–5.CrossRefGoogle Scholar
  48. 48.
    Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;279:1615–22.CrossRefGoogle Scholar
  49. 49.
    Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–9.Google Scholar
  50. 50.
    The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339:1349–57.CrossRefGoogle Scholar
  51. 51.
    Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–58.CrossRefGoogle Scholar
  52. 52.
    Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364:685–96.CrossRefGoogle Scholar
  53. 53.
    Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yusuf S, Bosch J, Dagenais G, et al. Cholesterol lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med. 2016;374:2021–31.CrossRefGoogle Scholar
  55. 55.
    Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360:1623–30.CrossRefGoogle Scholar
  56. 56.
    Nissen SE. Aggressive lipid-lowering therapy and regression of coronary atheroma. JAMA. 2004;292:1–3.CrossRefGoogle Scholar
  57. 57.
    Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–65.CrossRefGoogle Scholar
  58. 58.
    Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cannon CP, Steinberg BA, Murphy SA, Mega JL, Braunwald E. Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J Am Coll Cardiol. 2006;48:438–45.CrossRefGoogle Scholar
  60. 60.
    Wiviott SD, Cannon CP, Morrow DA, Ray KK, Pfeffer M, Braunwald E. Can low-density lipoprotein be too low? The safety and efficacy of achieving very low low-density lipoprotein with intensive statin therapy a pravastatin or atorvastatin evaluation and infection therapy–thrombolysis in myocardial infarction 22 (PROVE IT-TIMI 22) substudy. J Am Coll Cardiol. 2005;46:1411–6.CrossRefGoogle Scholar
  61. 61.
    Toth P. Low-density lipoprotein reduction in high-risk patients: how low do you go? Curr Atheroscler Rep. 2004;6:348–52.CrossRefGoogle Scholar
  62. 62.
    Nicholls SJ, Ballantyne CM, Barter PJ, et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011;365:2078–87.CrossRefGoogle Scholar
  63. 63.
    LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–35.CrossRefGoogle Scholar
  64. 64.
    Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.CrossRefGoogle Scholar
  65. 65.
    Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.CrossRefGoogle Scholar
  66. 66.
    Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25.CrossRefGoogle Scholar
  67. 67.
    Jackevicius CA, Mamdani M, Tu JV. Adherence with statin therapy in elderly patients with and without acute coronary syndromes. JAMA. 2002;288:462–7.CrossRefGoogle Scholar
  68. 68.
    Maningat P, Gordon BR, Breslow JL. How do we improve patient compliance and adherence to long-term statin therapy? Curr Atheroscler Rep. 2013;15:291.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ellis JJ, Erickson SR, Stevenson JG, Bemstein SJ, Stiles RA, Fendrick MA. Suboptimal statin adherence and discontinuation in primary and secondary prevention populations: should we target patients with the most to gain? J Gen Intern Med. 2004;19:638–45.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fruchart JC, Duriez P. HMG CoA reductase inhibitors and PPAR-alpha activators: are their effects on high-density lipoprotein cholesterol and their pleiotropic effects clinically relevant in prevention trials? Curr Atheroscler Rep. 2002;4:403–4.CrossRefGoogle Scholar
  71. 71.
    Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89–118.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kellick KA, Bottorff M, Toth PP. A clinician’s guide to statin drug-drug interactions. J Clin Lipidol. 2014;8:S30–46.CrossRefGoogle Scholar
  73. 73.
    Alsheikh-Ali AA, Maddukuri PV, Han H, Karas RH. Effect of the magnitude of lipid lowering on risk of elevated liver enzymes, rhabdomyolysis, and cancer: insights from large randomized statin trials. J Am Coll Cardiol. 2007;50:409–18.CrossRefGoogle Scholar
  74. 74.
    Harper CR, Jacobson TA. The broad spectrum of statin myopathy: from myalgia to rhabdomyolysis. Curr Opin Lipidol. 2007;18:401–8.CrossRefGoogle Scholar
  75. 75.
    Banach M, Rizzo M, Toth PP, et al. Statin intolerance – an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Expert Opin Drug Saf. 2015;14:935–55.CrossRefGoogle Scholar
  76. 76.
    Toth PP, Harper CR, Jacobson TA. Clinical characterization and molecular mechanisms of statin myopathy. Expert Rev Cardiovasc Ther. 2008;6:955–69.CrossRefGoogle Scholar
  77. 77.
    Pasternak RC, Smith SC Jr, Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. Stroke. 2002;33:2337–41.CrossRefGoogle Scholar
  78. 78.
    McKenney JM, Davidson MH, Jacobson TA, Guyton JR, National Lipid Association Statin Safety Assessment Task Force. Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am J Cardiol. 2006;97:17.Google Scholar
  79. 79.
    Rosenson RS, Baker SK, Jacobson TA, Kopecky SL, Parker BA, The National Lipid Association's Muscle Safety Expert Panel. An assessment by the statin muscle safety task force: 2014 update. J Clin Lipidol. 2014;8:S58–71.CrossRefGoogle Scholar
  80. 80.
    Group HPSC. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22.CrossRefGoogle Scholar
  81. 81.
    Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO Study. Cardiovasc Drugs Ther. 2005;19:403–14.CrossRefGoogle Scholar
  82. 82.
    Nielsen SF, Nordestgaard BG. Negative statin-related news stories decrease statin persistence and increase myocardial infarction and cardiovascular mortality: a nationwide prospective cohort study. Eur Heart J. 2016;37:908–16.CrossRefGoogle Scholar
  83. 83.
    Serban MC, Colantonio LD, Manthripragada AD, et al. Statin intolerance and risk of coronary heart events and all-cause mortality following myocardial infarction. J Am Coll Cardiol. 2017;69:1386–95.CrossRefGoogle Scholar
  84. 84.
    Graham JH, Sanchez RJ, Saseen JJ, Mallya UG, Panaccio MP, Evans MA. Clinical and economic consequences of statin intolerance in the United States: results from an integrated health system. J Clin Lipidol. 2017;11:70–9. e1CrossRefGoogle Scholar
  85. 85.
    de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307–16.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Nissen SE. High-dose statins in acute coronary syndromes: not just lipid levels. JAMA. 2004;292:1365–7.CrossRefGoogle Scholar
  87. 87.
    Puri P, Sanyal AJ. Why do lipid-lowering agents affect serum transaminase levels, are these drugs toxic to the liver, and can they precipitate liver failure? In: Toth PP, Sica DA, editors. Clinical challenges in lipid disorders. Oxford: Atlas Publishing; 2008. p. 189–202.Google Scholar
  88. 88.
    Sniderman AD. Is there value in liver function test and creatine phosphokinase monitoring with statin use? Am J Cardiol. 2004;94:30F–4F.CrossRefGoogle Scholar
  89. 89.
    Bays H, Cohen DE, Chalasani N, Harrison SA, The National Lipid Association’s Statin Safety Task Force. An assessment by the statin liver safety task force: 2014 update. J Clin Lipidol. 2014;8:S47–57.CrossRefGoogle Scholar
  90. 90.
    Ganda OP. Statin-induced diabetes: incidence, mechanisms, and implications. F1000Research. 2016;5:F1000 Faculty Rev-:1499.CrossRefGoogle Scholar
  91. 91.
    Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.CrossRefGoogle Scholar
  92. 92.
    Preiss D, Seshasai SRK, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy. JAMA. 2011;305:2556–64.CrossRefPubMedGoogle Scholar
  93. 93.
    Navarese EP, Buffon A, Andreotti F, et al. Meta-analysis of impact of different types and doses of statins on new-onset diabetes mellitus. Am J Cardiol. 2013;111:1123–30.CrossRefPubMedGoogle Scholar
  94. 94.
    Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380:565–71.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Waters DD, Ho JE, DeMicco DA, et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J Am Coll Cardiol. 2011;57:1535–45.CrossRefPubMedGoogle Scholar
  96. 96.
    Waters DD, Ho JE, Boekholdt SM, et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. J Am Coll Cardiol. 2013;61:148–52.CrossRefPubMedGoogle Scholar
  97. 97.
    Davis HRCD, Hoos L, et al. Ezetimibe (SCH58235) localizes to the brush border to a small intestinal enterocyte and inhibits enterocyte cholesterol uptake and absorption. Eur Heart J. 2000;21(Suppl):636.Google Scholar
  98. 98.
    Sudhop T, Lutjohann D, Kodal A, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation. 2002;106:1943–8.CrossRefPubMedGoogle Scholar
  99. 99.
    Garcia-Calvo M, Lisnock J, Bull HG, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A. 2005;102:8132–7.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Morrone D, Weintraub WS, Toth PP, et al. Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: a pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis. 2012;223:251–61.CrossRefPubMedGoogle Scholar
  101. 101.
    Melani L, Mills R, Hassman D, et al. Efficacy and safety of ezetimibe coadministered with pravastatin in patients with primary hypercholesterolemia: a prospective, randomized, double-blind trial. Eur Heart J. 2003;24:717–28.CrossRefPubMedGoogle Scholar
  102. 102.
    Goldberg AC, Sapre A, Liu J, Capece R, Mitchel YB. Efficacy and safety of ezetimibe coadministered with simvastatin in patients with primary hypercholesterolemia: a randomized, double-blind, placebo-controlled trial. Mayo Clin Proc. 2004;79:620–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Toth PP, Davidson MH. Simvastatin plus ezetimibe: combination therapy for the management of dyslipidaemia. Expert Opin Pharmacother. 2005;6:131–9.CrossRefPubMedGoogle Scholar
  104. 104.
    Toth PP, Catapano A, Tomassini JE, Tershakovec AM. Update on the efficacy and safety of combination ezetimibe plus statin therapy. Clin Lipidol. 2010;5:655–84.CrossRefGoogle Scholar
  105. 105.
    Knopp RHBH, Manion CV, et al. Effect of ezetimibe on serum concentrations of lipid-soluble vitamins. Atherosclerosis. 2001;2:90.CrossRefGoogle Scholar
  106. 106.
    Ballantyne CM, Blazing MA, King TR, Brady WE, Palmisano J. Efficacy and safety of ezetimibe co-administered with simvastatin compared with atorvastatin in adults with hypercholesterolemia. Am J Cardiol. 2004;93:1487–94.CrossRefPubMedGoogle Scholar
  107. 107.
    Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA. 1984;251:351–64.Google Scholar
  109. 109.
    Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323:1289–98.CrossRefPubMedGoogle Scholar
  110. 110.
    Davidson MH, Toth P, Weiss S, et al. Low-dose combination therapy with colesevelam hydrochloride and lovastatin effectively decreases low-density lipoprotein cholesterol in patients with primary hypercholesterolemia. Clin Cardiol. 2001;24:467–74.CrossRefGoogle Scholar
  111. 111.
    Knapp HH, Schrott H, Ma P, et al. Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am J Med. 2001;110:352–60.CrossRefGoogle Scholar
  112. 112.
    Hunninghake D, Insull W Jr, Toth P, Davidson D, Donovan JM, Burke SK. Coadministration of colesevelam hydrochloride with atorvastatin lowers LDL cholesterol additively. Atherosclerosis. 2001;158:407–16.CrossRefGoogle Scholar
  113. 113.
    Zieve FJ, Kalin MF, Schwartz SL, Jones MR, Bailey WL. Results of the Glucose-Lowering Effect of WelChol Study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther. 2007;29:74–83.CrossRefGoogle Scholar
  114. 114.
    Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med. 2008;168:1531–40.CrossRefGoogle Scholar
  115. 115.
    Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31:1479–84.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology. 2005;146:984–91.CrossRefGoogle Scholar
  117. 117.
    Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA. 1988;260:641–51.CrossRefGoogle Scholar
  118. 118.
    Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA. 2001;285:1585–91.CrossRefGoogle Scholar
  119. 119.
    Rubins HB, Robins SJ, Collins D, et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs High-Density Lipoprotein Intervention Trial (VA-HIT). Arch Intern Med. 2002;162:2597–604.CrossRefGoogle Scholar
  120. 120.
    The BIP Study Group. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation. 2000;102:21–7.CrossRefGoogle Scholar
  121. 121.
    Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.CrossRefGoogle Scholar
  122. 122.
    Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.CrossRefGoogle Scholar
  123. 123.
    Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet. 1996;347:849–53.CrossRefGoogle Scholar
  124. 124.
    Frick MH, Syvanne M, Nieminen MS, et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Lopid Coronary Angiography Trial (LOCAT) Study Group. Circulation. 1997;96:2137–43.CrossRefGoogle Scholar
  125. 125.
    Karpe F, Taskinen MR, Nieminen MS, et al. Remnant-like lipoprotein particle cholesterol concentration and progression of coronary and vein-graft atherosclerosis in response to gemfibrozil treatment. Atherosclerosis. 2001;157:181–7.CrossRefGoogle Scholar
  126. 126.
    Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357:905–10.Google Scholar
  127. 127.
    Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther. 2002;301:1042–51.CrossRefGoogle Scholar
  128. 128.
    Prueksaritanont T, Subramanian R, Fang X, et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos. 2002;30:505–12.CrossRefGoogle Scholar
  129. 129.
    Clofibrate and niacin in coronary heart disease. JAMA. 1975;231:360–81.Google Scholar
  130. 130.
    Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.CrossRefGoogle Scholar
  131. 131.
    Armitage J, Bowman L, Wallendszus K, et al. Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: a double-blind randomised trial. Lancet. 2010;376:1658–69.CrossRefGoogle Scholar
  132. 132.
    Toth PP, Murthy AM, Sidhu MS, Boden WE. Is HPS2-THRIVE the death knell for niacin? J Clin Lipidol. 2015;9:343–50.CrossRefGoogle Scholar
  133. 133.
    Mosca L, Appel LJ, Benjamin EJ, et al. Summary of the American Heart Association’s evidence-based guidelines for cardiovascular disease prevention in women. Arterioscler Thromb Vasc Biol. 2004;24:394–6.CrossRefGoogle Scholar
  134. 134.
    Guyton JR, Bays HE. Safety considerations with niacin therapy. Am J Cardiol. 2007;99:S22–31.CrossRefGoogle Scholar
  135. 135.
    Birjmohun RS, Hutten BA, Kastelein JJ, Stroes ES. Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J Am Coll Cardiol. 2005;45:185–97.CrossRefGoogle Scholar
  136. 136.
    Harper CR, Jacobson TA. Usefulness of omega-3 fatty acids and the prevention of coronary heart disease. Am J Cardiol. 2005;96:1521–9.CrossRefGoogle Scholar
  137. 137.
    Kris-Etherton PM, Harris WS, Appel LJ. American Heart Association. Nutrition C. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57.CrossRefGoogle Scholar
  138. 138.
    Lee JH, O'Keefe JH, Lavie CJ, Marchioli R, Harris WS. Omega-3 fatty acids for cardioprotection. Mayo Clin Proc. 2008;83:324–32.CrossRefGoogle Scholar
  139. 139.
    Siscovick DS, Barringer TA, Fretts AM, et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association. Circulation. 2017;135:e867–84.CrossRefGoogle Scholar
  140. 140.
    Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105:1897–903.CrossRefGoogle Scholar
  141. 141.
    Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.CrossRefGoogle Scholar
  142. 142.
    Goldstein JL, Brown MS. Familial hypercholesterolemia: identification of a defect in the regulation of 3-Hydroxy-3-Methylglutaryl coenzyme a reductase activity associated with overproduction of cholesterol. Proc Natl Acad Sci U S A. 1973;70:2804–8.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.CrossRefGoogle Scholar
  144. 144.
    Schekman R. Discovery of the cellular and molecular basis of cholesterol control. Proc Natl Acad Sci U S A. 2013;110:14833–6.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    He G, Gupta S, Yi M, Michaely P, Hobbs HH, Cohen JC. ARH is a modular adaptor protein that interacts with the LDL receptor, Clathrin, and AP-2. J Biol Chem. 2002;277:44044–9.CrossRefGoogle Scholar
  146. 146.
    Royle SJ. The cellular functions of clathrin. Cell Mol Life Sci. 2006;63:1823–32.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Qian YW, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007;48:1488–98.CrossRefGoogle Scholar
  148. 148.
    Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007;4:214–25.CrossRefGoogle Scholar
  149. 149.
    Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.CrossRefGoogle Scholar
  150. 150.
    Kwon HJ, Lagace TA, McNutt MC, Horton JD, Deisenhofer J. Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci U S A. 2008;105:1820–5.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Peterson AS, Fong LG, Young SG. PCSK9 function and physiology. J Lipid Res. 2008;49:1152–6.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Benjannet S, Hamelin J, Chretien M, Seidah NG. Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem. 2012;287:33745–55.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Watts GF, Gidding S, Wierzbicki AS, et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Eur J Prev Cardiol. 2015;22:849–54.CrossRefGoogle Scholar
  154. 154.
    Zhu YM, Anderson TJ, Sikdar K, et al. Association of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) with cardiovascular risk in primary prevention. Arterioscler Thromb Vasc Biol. 2015;35:2254–9.CrossRefGoogle Scholar
  155. 155.
    Goldberg AC, Hopkins PN, Toth PP, et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on familial hypercholesterolemia. J Clin Lipidol. 2011;5:133–40.CrossRefGoogle Scholar
  156. 156.
    Vishwanath R, Hemphill LC. Familial hypercholesterolemia and estimation of US patients eligible for low-density lipoprotein apheresis after maximally tolerated lipid-lowering therapy. J Clin Lipidol. 8:18–28.CrossRefGoogle Scholar
  157. 157.
    Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the consensus panel on familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35:2146–57.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Gidding SS, Champagne MA, de Ferranti SD, et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation. 2015;132:2167–92.CrossRefGoogle Scholar
  159. 159.
    Stein EA, Raal F. Reduction of low-density lipoprotein cholesterol by monoclonal antibody inhibition of PCSK9. Annu Rev Med. 2014;65:417–31.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Blacklow SC. Versatility in ligand recognition by LDL receptor family proteins: advances and frontiers. Curr Opin Struct Biol. 2007;17:419–26.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Toth PP. Novel therapies for low-density lipoprotein cholesterol reduction. Am J Cardiol. 2016;118:19A–32A.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Cannon CP, Cariou B, Blom D, et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–94.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Stein EA, Gipe D, Bergeron J, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380:29–36.CrossRefGoogle Scholar
  165. 165.
    Roth EM, Taskinen MR, Ginsberg HN, et al. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: results of a 24 week, double-blind, randomized phase 3 trial. Int J Cardiol. 2014;176:55–61.CrossRefGoogle Scholar
  166. 166.
    Kastelein JJ, Ginsberg HN, Langslet G, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Blom DJ, Dent R, Castro RC, Toth PP. PCSK9 inhibition in the management of hyperlipidemia: focus on evolocumab. Vasc Health Risk Manag. 2016;12:185–97.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Blom DJ, Hala T, Bolognese M, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19.CrossRefGoogle Scholar
  169. 169.
    Koren MJ, Giugliano RP, Raal FJ, et al. Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation. 2014;129:234–43.CrossRefGoogle Scholar
  170. 170.
    Raal FJ, Honarpour N, Blom DJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:341–50.CrossRefGoogle Scholar
  171. 171.
    Robinson JG, Nedergaard BS, Rogers WJ, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311:1870–82.CrossRefGoogle Scholar
  172. 172.
    Stroes E, Colquhoun D, Sullivan D, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8.CrossRefGoogle Scholar
  173. 173.
    Toth PP, Descamps O, Genest J, et al. Pooled safety analysis of Evolocumab in over 6000 patients from double-blind and open-label extension studies. Circulation. 2017;135:1819–31.CrossRefGoogle Scholar
  174. 174.
    Jones PH, Bays HE, Chaudhari U, et al. Safety of Alirocumab (a PCSK9 monoclonal antibody) from 14 randomized trials. Am J Cardiol. 2016;118:1805–11.CrossRefGoogle Scholar
  175. 175.
    Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.CrossRefPubMedGoogle Scholar
  176. 176.
    Giugliano RP, Mach F, Zavitz K, et al. Design and rationale of the EBBINGHAUS trial: a phase 3, double-blind, placebo-controlled, multicenter study to assess the effect of evolocumab on cognitive function in patients with clinically evident cardiovascular disease and receiving statin background lipid-lowering therapy—a cognitive study of patients enrolled in the FOURIER trial. Clin Cardiol. 2017;40:59–65.CrossRefPubMedGoogle Scholar
  177. 177.
    Toth PP. Antisense therapy and emerging applications for the management of dyslipidemia. J Clin Lipidol. 2011;5:441–9.CrossRefPubMedGoogle Scholar
  178. 178.
    Toth PP. Emerging LDL therapies: Mipomersen-antisense oligonucleotide therapy in the management of hypercholesterolemia. J Clin Lipidol. 2013;7:S6–10.CrossRefPubMedGoogle Scholar
  179. 179.
    Wong E, Goldberg T. Mipomersen (kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P T. 2014;39:119–22.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol. 2003;4:457–67.CrossRefPubMedGoogle Scholar
  181. 181.
    McGowan MP, Tardif JC, Ceska R, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7:e49006.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.CrossRefGoogle Scholar
  183. 183.
    Samaha FF, McKenney J, Bloedon LT, Sasiela WJ, Rader DJ. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2008;5:497–505.CrossRefPubMedGoogle Scholar
  184. 184.
    Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res. 2003;44:22–32.CrossRefGoogle Scholar
  185. 185.
    Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–56.CrossRefGoogle Scholar
  186. 186.
    Cuchel M, Meagher EA, du Toit TH, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381:40–6.CrossRefPubMedGoogle Scholar
  187. 187.
    Toth PP, Shah PK, Wilkinson MJ, Davidson MH, McCullough PA. Use of microsomal triglyceride transfer protein inhibitors in patients with homozygous familial hypercholesterolemia: translating clinical trial experience into clinical practice. Rev Cardiovasc Med. 2014;15:1–10.CrossRefPubMedGoogle Scholar
  188. 188.
    Whitney E. The Air Force/Texas Coronary Atherosclerosis Prevention Study: implications for preventive cardiology in the general adult US population. Curr Atheroscler Rep. 1999;1:38–43.CrossRefPubMedGoogle Scholar
  189. 189.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomized placebo-controlled trial. Lancet. 2002;360:7–22.CrossRefGoogle Scholar
  190. 190.
    Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med. 1995;333:1301–7.CrossRefPubMedGoogle Scholar
  191. 191.
    Pitt B, et al. Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease. Atorvastatin versus Revascularization Treatment Investigators. N Engl J Med. 1999;341:70–6.CrossRefPubMedGoogle Scholar
  192. 192.
    Sacks FM, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med. 1996;335:1001–9.CrossRefPubMedGoogle Scholar
  193. 193.
    Pedersen TR, et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA. 2005;294(19):2437–45.CrossRefPubMedGoogle Scholar
  194. 194.
    The LIPID Study Group. Design features and baseline characteristics of the LIPID (Long-Term Intervention with Pravastatin in Ischemic Disease) Study: a randomized trial in patients with previous acute myocardial infarction and/or unstable angina pectoris. Am J Cardiol. 1995;76:474–9.CrossRefGoogle Scholar
  195. 195.
    Serruys PW, et al. Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention. A randomized controlled trial. JAMA. 2002;287:3215–22.CrossRefPubMedGoogle Scholar
  196. 196.
    Schwartz GG, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL Study: a randomized controlled trial. JAMA. 2001;285:1711–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations