Advertisement

Superfluidity and Superconductivity in Neutron Stars

  • Brynmor HaskellEmail author
  • Armen Sedrakian
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 457)

Abstract

This review focuses on applications of the ideas of superfluidity and superconductivity in neutron stars in a broader context, ranging from the microphysics of pairing in nucleonic superfluids to macroscopic manifestations of superfluidity in pulsars. The exposition of the basics of pairing, vorticity and mutual friction can serve as an introduction to the subject. We also review some topics of recent interest, including the various types of pinning of vortices, glitches, and oscillations in neutron stars containing superfluid phases of baryonic matter.

Notes

Acknowledgements

B.H. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 702713. A.S. is supported by the Deutsche Forschungsgemeinschaft (Grant No. SE 1836/3-2). We acknowledge the support by the NewCompStar COST Action MP1304 and by the PHAROS COST Action CA 16214.

References

  1. Akbal, O., Alpar, M.A., Buchner, S., Pines, D.: Nonlinear interglitch dynamics, the braking index of the Vela pulsar and the time to the next glitch. ArXiv e-prints (2016). 1612.03805
  2. Akgün, T., Link, B., Wasserman, I.: Precession of the isolated neutron star PSR B1828-11. MNRAS 365, 653–672 (2006). https://doi.org/10.1111/j.1365-2966.2005.09745.x. astro-ph/0506606 ADSCrossRefGoogle Scholar
  3. Alm, T., Röpke, G., Sedrakian, A., Weber, F.: 3D 2 pairing in asymmetric nuclear matter. Nucl. Phys. A 604, 491–504 (1996). https://doi.org/10.1016/0375-9474(96)00153-4 ADSCrossRefGoogle Scholar
  4. Alpar, M.A.: Pinning and threading of quantized vortices in the pulsar crust superfluid. Astrophys. J. 213, 527–530 (1977) . https://doi.org/10.1086/155183 ADSCrossRefGoogle Scholar
  5. Alpar, M.A., Pines, D., Anderson, P.W., Shaham, J.: Vortex creep and the internal temperature of neutron stars. I - general theory. Astrophys. J. 276, 325–334 (1984a). https://doi.org/10.1086/161616 ADSCrossRefGoogle Scholar
  6. Alpar, M.A., Langer, S.A., Sauls, J.A.: Rapid postglitch spin-up of the superfluid core in pulsars. Astrophys. J. 282, 533–541 (1984b). https://doi.org/10.1086/162232 ADSCrossRefGoogle Scholar
  7. Alpar, M.A., Anderson, P.W., Pines, D., Shaham, J.: Vortex creep and the internal temperature of neutron stars. II - VELA pulsar. Astrophys. J. 278, 791–805 (1984c). https://doi.org/10.1086/161849 ADSCrossRefGoogle Scholar
  8. Alpar, M.A., Nandkumar, R., Pines, D.: Vortex creep and the internal temperature of neutron stars The Crab pulsar and PSR 0525 + 21. Astrophys. J. 288, 191–195 (1985). https://doi.org/10.1086/162780 ADSCrossRefGoogle Scholar
  9. Alpar, M.A., Chau, H.F., Cheng, K.S., Pines, D.: Postglitch relaxation of the VELA pulsar after its first eight large glitches - a reevaluation with the vortex creep model. Astrophys. J. 409, 345–359 (1993). https://doi.org/10.1086/172668 ADSCrossRefGoogle Scholar
  10. Andersson, N.: A new class of unstable modes of rotating relativistic stars. Astrophys. J. 502, 708–713 (1998). https://doi.org/10.1086/305919.gr-qc/9706075 ADSCrossRefGoogle Scholar
  11. Andersson, N., Comer, G.L.: A flux-conservative formalism for convective and dissipative multi-fluid systems, with application to Newtonian superfluid neutron stars. Classical Quantum Gravity 23, 5505–5529 (2006). https://doi.org/10.1088/0264-9381/23/18/003. physics/0509241 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. Andersson, N., Comer, G.L.: Relativistic fluid dynamics: physics for many different scales. Living Rev. Relativ. 10, 1 (2007).  https://doi.org/10.12942/lrr-2007-1. gr-qc/0605010
  13. Andersson, N., Comer, G.L.: A covariant action principle for dissipative fluid dynamics: from formalism to fundamental physics. Classical Quantum Gravity 32, 075008 (2015). https://doi.org/10.1088/0264-9381/32/7/075008. 1306.3345 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. Anderson, P.W., Itoh, N.: Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256, 25–27 (1975). https://doi.org/10.1038/256025a0 ADSCrossRefGoogle Scholar
  15. Andersson, N., Kokkotas, K.D.: The R-mode instability in rotating neutron stars. Int. J. Modern Phys. D 10, 381–441 (2001). https://doi.org/10.1142/S0218271801001062. gr-qc/0010102 ADSCrossRefGoogle Scholar
  16. Andersson, N., Comer, G.L., Langlois, D.: Oscillations of general relativistic superfluid neutron stars. Phys. Rev. D 66, 104002 (2002).  https://doi.org/10.1103/PhysRevD.66.104002. gr-qc/0203039
  17. Andersson, N., Comer, G.L., Glampedakis, K.: How viscous is a superfluid neutron star core?. Nucl. Phys. A 763, 212–229 (2005). https://doi.org/10.1016/j.nuclphysa.2005.08.012. astro-ph/0411748 ADSCrossRefGoogle Scholar
  18. Andersson, N., Sidery, T., Comer, G.L.: Mutual friction in superfluid neutron stars. Mon. Not. R. Astron. Soc. 368, 162–170 (2006). https://doi.org/10.1111/j.1365-2966.2006.10147.x. astro-ph/0510057 ADSCrossRefGoogle Scholar
  19. Andersson, N., Sidery, T., Comer, G.L.: Superfluid neutron star turbulence. Mon. Not. R. Astron. Soc. 381, 747–756 (2007). https://doi.org/10.1111/j.1365-2966.2007.12251.x. astro-ph/0703257 ADSCrossRefGoogle Scholar
  20. Andersson, N., Glampedakis, K., Haskell, B.: Oscillations of dissipative superfluid neutron stars. Phys. Rev. D 79, 103009 (2009).  https://doi.org/10.1103/PhysRevD.79.103009. 0812.3023
  21. Andersson, N., Haskell, B., Comer, G.L.: r-modes in low temperature color-flavor-locked superconducting quark stars. Phys. Rev. D 82, 023007 (2010).  https://doi.org/10.1103/PhysRevD.82.023007. 1005.1163
  22. Andersson, N., Glampedakis, K., Ho, W.C.G., Espinoza, C.M.: Pulsar glitches: the crust is not enough. Phys. Rev. Lett. 109, 241103 (2012).  https://doi.org/10.1103/PhysRevLett.109.241103. 1207.0633
  23. Andersson, N., Glampedakis, K., Hogg, M.: Superfluid instability of r-modes in “differentially rotating” neutron stars. Phys. Rev. D 87, 063007 (2013a).  https://doi.org/10.1103/PhysRevD.87.063007. 1208.1852
  24. Andersson, N., Krüger, C., Comer, G.L., Samuelsson, L.: A minimal model for finite temperature superfluid dynamics. Classical Quantum Gravity 30, 235025 (2013b). https://doi.org/10.1088/0264-9381/30/23/235025. 1212.3987 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. Andersson, N., Wells, S., Vickers, J.A.: Quantised vortices and mutual friction in relativistic superfluids. Classical Quantum Gravity 33, 245010 (2016). https://doi.org/10.1088/0264-9381/33/24/245010. 1601.07395 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. Andreev, A.F., Bashkin, E.P.: Three-velocity hydrodynamics of superfluid solutions. Sov. J. Exp. Theor. Phys. 42 164 (1976)ADSGoogle Scholar
  27. Antonelli, M., Pizzochero, P.M.: Axially symmetric equations for differential pulsar rotation with superfluid entrainment. Mon. Not. R. Astron. Soc. 464 (2017), 721–733.  https://doi.org/10.1093/mnras/stw2376. 1603.02838 ADSCrossRefGoogle Scholar
  28. Antonelli, M., Montoli, A., Pizzochero, P.M.: Effects of general relativity on glitch amplitudes and pulsar mass upper bounds. Mon. Not. R. Astron. Soc. (2018)  https://doi.org/10.1093/mnras/sty130. 1710.05879 ADSCrossRefGoogle Scholar
  29. Ashton, G., Jones, D.I., Prix, R.: On the free-precession candidate PSR B1828-11: evidence for increasing deformation. Mon. Not. R. Astron. Soc. 467, 164–178 (2017).  https://doi.org/10.1093/mnras/stx060. 1610.03508
  30. Baldo, M., Elgarøy, Ø., Engvik, L., Hjorth-Jensen, M., Schulze, H.-J.: 3P 2- 3F 2 pairing in neutron matter with modern nucleon-nucleon potentials. Phys. Rev. C 58, 1921–1928 (1998).  https://doi.org/10.1103/PhysRevC.58.1921. nucl-th/9806097 ADSCrossRefGoogle Scholar
  31. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).  https://doi.org/10.1103/PhysRev.108.1175 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. Baym, G., Pethick, C., Pines, D., Ruderman, M.: Spin up in neutron stars : the future of the vela pulsar. Nature 224, 872–874 (1969). https://doi.org/10.1038/224872a0 ADSCrossRefGoogle Scholar
  33. Bildsten, L., Epstein, R.I.: Superfluid dissipation time scales in neutron star crusts. ApJ 342, 951–957 (1989). https://doi.org/10.1086/167652 ADSCrossRefGoogle Scholar
  34. Bogoljubov, N.N.: On a new method in the theory of superconductivity. Il Nuovo Cimento (1955–1965) 7, 794–805 (1958). https://doi.org/10.1007/BF02745585 ADSMathSciNetCrossRefGoogle Scholar
  35. Bohr, A., Mottelson, B.R., Pines, D.: Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state. Phys. Rev. 110, 936–938 (1958).  https://doi.org/10.1103/PhysRev.110.936 ADSCrossRefGoogle Scholar
  36. Bruk, Y.M.: Intermediate state in superconducting neutron star. Astrophysics 9, 134–143 (1973). https://doi.org/10.1007/BF01011420 ADSCrossRefGoogle Scholar
  37. Buckley, K.B., Metlitski, M.A., Zhitnitsky, A.R.: Vortices and type-I superconductivity in neutron stars. Phys. Rev. C 69, 055803 (2004).  https://doi.org/10.1103/PhysRevC.69.055803. hep-ph/0403230
  38. Caroli, C., Matricon, J.: Excitations électroniques dans les supraconducteurs purs de 2ème espèce. Physik der Kondensierten Materie 3, 380–401 (1965). https://doi.org/10.1007/BF02422806 ADSGoogle Scholar
  39. Carter, B.: Convective variational approach to relativistic thermodynamics of dissipative fluids. Proc. R. Soc. London, Ser. A 433, 45–62 (1991).  https://doi.org/10.1098/rspa.1991.0034 Google Scholar
  40. Carter, B., Khalatnikov, I.M.: Momentum, vorticity, and helicity in covariant superfluid dynamics. Ann. Phys. 219, 243–265 (1992). https://doi.org/10.1016/0003-4916(92)90348-P ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. Carter, B., Khalatnikov, I.M.: Canonically covariant formulation of Landau’s Newtonian superfluid dynamics. Rev. Math. Phys. 6, 277–304 (1994). https://doi.org/10.1142/S0129055X94000134 MathSciNetzbMATHCrossRefGoogle Scholar
  42. Carter, B., Langlois, D.: Relativistic models for superconducting-superfluid mixtures. Nucl. Phys. B 531, 478–504 (1998). https://doi.org/10.1016/S0550-3213(98)00430-1. gr-qc/9806024 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. Carter, B., Langlois, D., Sedrakian, D.M.: Centrifugal buoyancy as a mechanism for neutron star glitches. Astron. Astrophys. 361, 795–802 (2000). astro-ph/0004121
  44. Chamel, N.: Neutron conduction in the inner crust of a neutron star in the framework of the band theory of solids. Phys. Rev. C 85, 035801 (2012).  https://doi.org/10.1103/PhysRevC.85.035801 ADSCrossRefGoogle Scholar
  45. Chamel, N.: Crustal entrainment and pulsar glitches. Phys. Rev. Lett. 110, 011101 (2013).  https://doi.org/10.1103/PhysRevLett.110.011101. 1210.8177
  46. Chau, H.F., Cheng, K.S., Ding, K.Y.: Implications of 3P2 superfluidity in the interior of neutron stars. Astrophys. J. 399, 213–217 (1992). https://doi.org/10.1086/171917 ADSCrossRefGoogle Scholar
  47. Chauve, P., Le Doussal, P., Jörg Wiese, K.: Renormalization of pinned elastic systems: how does it work beyond one loop? Phys. Rev. Lett. 86, 1785–1788 (2001).  https://doi.org/10.1103/PhysRevLett.86.1785. cond-mat/0006056 ADSCrossRefGoogle Scholar
  48. Chen, J.M.C., Clark, J.W., Davé, R.D., Khodel, V.V.: Pairing gaps in nucleonic superfluids. Nucl. Phys. A 555, 59–89 (1993). https://doi.org/10.1016/0375-9474(93)90314-N ADSCrossRefGoogle Scholar
  49. Cheng, K.S., Pines, D., Alpar, M.A., Shaham, J.: Spontaneous superfluid unpinning and the inhomogeneous distribution of vortex lines in neutron stars. Astrophys. J. 330, 835–846 (1988). https://doi.org/10.1086/166517 ADSCrossRefGoogle Scholar
  50. Chugunov, A.I., Gusakov, M.E., Kantor, E.M.: New possible class of neutron stars: hot and fast non-accreting rotators. Mon. Not. R. Astron. Soc. 445 (2014), 385–391.  https://doi.org/10.1093/mnras/stu1772. 1408.6770 ADSCrossRefGoogle Scholar
  51. Comer, G.L., Langlois, D., Lin, L.M.: Quasinormal modes of general relativistic superfluid neutron stars. Phys. Rev. D 60, 104025 (1999).  https://doi.org/10.1103/PhysRevD.60.104025. gr-qc/9908040
  52. Cooper, L.N.: Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956).  https://doi.org/10.1103/PhysRev.104.1189 ADSzbMATHCrossRefGoogle Scholar
  53. Dean, D.J., Hjorth-Jensen, M.: Pairing in nuclear systems: from neutron stars to finite nuclei. Rev. Mod. Phys. 75, 607–656 (2003).  https://doi.org/10.1103/RevModPhys.75.607. nucl-th/0210033 ADSCrossRefGoogle Scholar
  54. Dodson, R.G., McCulloch, P.M., Lewis, D.R.: High time resolution observations of the January 2000 glitch in the vela pulsar. Astrophys. J. 564, L85–L88 (2002). https://doi.org/10.1086/339068. astro-ph/0201005 ADSCrossRefGoogle Scholar
  55. Donati, P., Pizzochero, P.M.: Fully consistent semi-classical treatment of vortex-nucleus interaction in rotating neutron stars. Nucl. Phys. A 742, 363–379 (2004). https://doi.org/10.1016/j.nuclphysa.2004.07.002 ADSCrossRefGoogle Scholar
  56. Donati, P., Pizzochero, P.M.: Realistic energies for vortex pinning in intermediate-density neutron star matter. Phys. Lett. B 640, 74–81 (2006). https://doi.org/10.1016/j.physletb.2006.07.047 ADSCrossRefGoogle Scholar
  57. Donnelly, R.J.: Quantized Vortices in Helium II. University of Massachusetts, Amherst (1991)Google Scholar
  58. Eckart, C.: The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Phys. Rev. 58, 919–924 (1940).  https://doi.org/10.1103/PhysRev.58.919 zbMATHGoogle Scholar
  59. Elfritz, J.G., Pons, J.A., Rea, N., Glampedakis, K., Viganò, D.: Simulated magnetic field expulsion in neutron star cores. Mon. Not. R. Astron. Soc. 456, 4461–4474 (2016).  https://doi.org/10.1093/mnras/stv2963. 1512.07151 ADSCrossRefGoogle Scholar
  60. Epstein, R.I., Baym, G.: Vortex drag and the spin-up time scale for pulsar glitches. Astrophys. J. 387, 276–287 (1992). https://doi.org/10.1086/171079 ADSCrossRefGoogle Scholar
  61. Espinoza, C.M., Antonopoulou, D., Stappers, B.W., Watts, A., Lyne, A.G.: Neutron star glitches have a substantial minimum size. Mon. Not. R. Astron. Soc. 440, 2755–2762 (2014).  https://doi.org/10.1093/mnras/stu395. 1402.7219 ADSCrossRefGoogle Scholar
  62. Feibelman, P.J.: Relaxation of electron velocity in a rotating neutron superfluid: application to the relaxation of a pulsar’s slowdown rate. Phys. Rev. D 4, 1589–1597 (1971).  https://doi.org/10.1103/PhysRevD.4.1589 ADSCrossRefGoogle Scholar
  63. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, Boston (1971)Google Scholar
  64. Fily, Y., Olive, E., di Scala, N., Soret, J.C.: Critical behavior of plastic depinning of vortex lattices in two dimensions: molecular dynamics simulations. Phys. Rev. B 82, 134519 (2010).  https://doi.org/10.1103/PhysRevB.82.134519. 0912.3835
  65. Friedman, J.L., Morsink, S.M.: Axial Instability of rotating relativistic stars. Astrophys. J. 502 (1998), 714–720. https://doi.org/10.1086/305920. gr-qc/9706073 ADSCrossRefGoogle Scholar
  66. Gaertig, E., Glampedakis, K., Kokkotas, K.D., Zink, B.: f-mode instability in relativistic neutron stars. Phys. Rev. Lett. 107, 101102 (2011).  https://doi.org/10.1103/PhysRevLett.107.101102. 1106.5512
  67. Gandolfi, S., Illarionov, A.Y., Fantoni, S., Pederiva, F., Schmidt, K.E.: Equation of state of superfluid neutron matter and the calculation of the 1S 0 pairing gap. Phys. Rev. Lett. 101, 132501 (2008).  https://doi.org/10.1103/PhysRevLett.101.132501. 0805.2513
  68. Gezerlis, A., Carlson, J.: Low-density neutron matter. Phys. Rev. C 81, 025803 (2010).  https://doi.org/10.1103/PhysRevC.81.025803. 0911.3907
  69. Gezerlis, A., Pethick, C.J., Schwenk, A.: Pairing and superfluidity of nucleons in neutron stars. ArXiv e-prints (2014). 1406.6109
  70. Glaberson, W.I., Johnson, W.W., Ostermeier, R.M.: Instability of a vortex array in He II. Phys. Rev. Lett. 33, 1197–1200 (1974).  https://doi.org/10.1103/PhysRevLett.33.1197 ADSCrossRefGoogle Scholar
  71. Glampedakis, K., Andersson, N.: Hydrodynamical trigger mechanism for pulsar glitches. Phys. Rev. Lett. 102, 141101 (2009).  https://doi.org/10.1103/PhysRevLett.102.141101. 0806.3664
  72. Glampedakis, K., Andersson, N.: Magneto-rotational neutron star evolution: the role of core vortex pinning. Astrophys. J. 740, L35 (2011). https://doi.org/10.1088/2041-8205/740/2/L35. 1106.5997 ADSCrossRefGoogle Scholar
  73. Glampedakis, K., Andersson, N., Samuelsson, L.: Magnetohydrodynamics of superfluid and superconducting neutron star cores. Mon. Not. R. Astron. Soc. 410, 805–829 (2011). https://doi.org/10.1111/j.1365-2966.2010.17484.x. 1001.4046 ADSCrossRefGoogle Scholar
  74. Gorter, C.J., Mellink, J.H.: On the irreversible processes in liquid helium II. Physica 15, 285–304 (1949). https://doi.org/10.1016/0031-8914(49)90105-6 ADSCrossRefGoogle Scholar
  75. Graber, V., Andersson, N., Glampedakis, K., Lander, S.K.: Magnetic field evolution in superconducting neutron stars. Mon. Not. R. Astron. Soc. 453, 671–681 (2015).  https://doi.org/10.1093/mnras/stv1648. 1505.00124 ADSCrossRefGoogle Scholar
  76. Gualtieri, L., Kantor, E.M., Gusakov, M.E., Chugunov, A.I.: Quasinormal modes of superfluid neutron stars. Phys. Rev. D 90, 024010 (2014).  https://doi.org/10.1103/PhysRevD.90.024010. 1404.7512
  77. Gügercinoğlu, E., Alpar, M.A.: Vortex creep against Toroidal flux lines, crustal entrainment, and pulsar glitches. Astrophys. J. 788, L11 (2014). https://doi.org/10.1088/2041-8205/788/1/L11 ADSCrossRefGoogle Scholar
  78. Gügercinoğlu, E., Alpar ,M.A.: Microscopic vortex velocity in the inner crust and outer core of neutron stars. Mon. Not. R. Astron. Soc. 462, 1453–1460 (2016).  https://doi.org/10.1093/mnras/stw1758. 1607.05092 ADSCrossRefGoogle Scholar
  79. Gusakov, M.E.: Relativistic formulation of the Hall-Vinen-Bekarevich-Khalatnikov superfluid hydrodynamics. Phys. Rev. D 93, 064033 (2016).  https://doi.org/10.1103/PhysRevD.93.064033. 1601.07732
  80. Gusakov, M.E., Andersson, N.: Temperature-dependent pulsations of superfluid neutron stars. Mon. Not. R. Astron. Soc. 372, 1776–1790 (2006). https://doi.org/10.1111/j.1365-2966.2006.10982.x. astro-ph/0602282 ADSCrossRefGoogle Scholar
  81. Gusakov, M.E., Kantor, E.M., Chugunov, A.I., Gualtieri, L.: Dissipation in relativistic superfluid neutron stars. Mon. Not. R. Astron. Soc. 428, 1518–1536 (2013).  https://doi.org/10.1093/mnras/sts129. 1211.2452 ADSCrossRefGoogle Scholar
  82. Gusakov, M.E., Chugunov, A.I., Kantor, E.M.: Instability windows and evolution of rapidly rotating neutron stars. Phys. Rev. Lett. 112, 151101 (2014).  https://doi.org/10.1103/PhysRevLett.112.151101. 1310.8103
  83. Gusakov, M.E., Chugunov, A.I., Kantor, E.M.: Explaining observations of rapidly rotating neutron stars in low-mass X-ray binaries. Phys. Rev. D 90, 063001 (2014).  https://doi.org/10.1103/PhysRevD.90.063001. 1305.3825
  84. Hall, H.E., Vinen, W.F.: The rotation of liquid helium II. II. The theory of mutual friction in uniformly rotating helium II. Proc. R. Soc. London, Ser. A 238, 215–234 (1956).  https://doi.org/10.1098/rspa.1956.0215 zbMATHGoogle Scholar
  85. Harvey, J.A., Ruderman, M.A., Shaham, J.: Effects of neutron-star superconductivity on magnetic monopoles and core field decay. Phys. Rev. D 33, 2084–2091 (1986).  https://doi.org/10.1103/PhysRevD.33.2084 ADSCrossRefGoogle Scholar
  86. Haskell, B.: Tkachenko modes in rotating neutron stars: the effect of compressibility and implications for pulsar timing noise. Phys. Rev. D 83, 043006 (2011).  https://doi.org/10.1103/PhysRevD.83.043006. 1011.1180
  87. Haskell, B.: The effect of superfluid hydrodynamics on pulsar glitch sizes and waiting times. Mon. Not. R. Astron. Soc. 461, L77–L81 (2016).  https://doi.org/10.1093/mnrasl/slw103. 1603.04304 ADSCrossRefGoogle Scholar
  88. Haskell, B., Melatos, A.: Pinned vortex hopping in a neutron star crust. Mon. Not. R. Astron. Soc. 461, 2200–2211 (2016).  https://doi.org/10.1093/mnras/stw1334. 1510.03136 ADSCrossRefGoogle Scholar
  89. Haskell, B., Andersson, N., Passamonti, A.: r modes and mutual friction in rapidly rotating superfluid neutron stars. Mon. Not. R. Astron. Soc. 397 (2009), 1464–1485. https://doi.org/10.1111/j.1365-2966.2009.14963.x. 0902.1149 ADSCrossRefGoogle Scholar
  90. Haskell, B., Pizzochero, P.M., Sidery, T.: Modelling pulsar glitches with realistic pinning forces: a hydrodynamical approach. Mon. Not. R. Astron. Soc. 420, 658–671 (2012a). https://doi.org/10.1111/j.1365-2966.2011.20080.x. 1107.5295 ADSCrossRefGoogle Scholar
  91. Haskell, B., Degenaar, N., Ho, W.C.G.: Constraining the physics of the r-mode instability in neutron stars with X-ray and ultraviolet observations. Mon. Not. R. Astron. Soc. 424, 93–103 (2012b). https://doi.org/10.1111/j.1365-2966.2012.21171.x. 1201.2101 ADSCrossRefGoogle Scholar
  92. Haskell, B., Andersson, N., Comer, G.L.: Dynamics of dissipative multifluid neutron star cores. Phys. Rev. D 86, 063002 (2012c).  https://doi.org/10.1103/PhysRevD.86.063002. 1204.2894
  93. Haskell, B., Pizzochero, P.M., Seveso, S.: Investigating superconductivity in neutron star interiors with glitch models. Astrophys. J. 764, L25 (2013). https://doi.org/10.1088/2041-8205/764/2/L25. 1209.6260 ADSCrossRefGoogle Scholar
  94. Haskell, B., Glampedakis, K., Andersson, N.: A new mechanism for saturating unstable r modes in neutron stars. Mon. Not. R. Astron. Soc. 441, 1662–1668 (2014).  https://doi.org/10.1093/mnras/stu535. 1307.0985 ADSCrossRefGoogle Scholar
  95. Haskell, B., Andersson, N., D’Angelo, C., Degenaar, N., Glampedakis, K., Ho, W.C.G. et al.: Gravitational waves from rapidly rotating neutron stars. In: Sopuerta, C.F. (ed.) Gravitational Wave Astrophysics. Astrophysics and Space Science Proceedings, vol. 40, p. 85 (2015). 1407.8254. DOI Google Scholar
  96. Henriksson, K.T., Wasserman, I.: Poloidal magnetic fields in superconducting neutron stars. Mon. Not. R. Astron. Soc. 431, 2986–3002 (2013).  https://doi.org/10.1093/mnras/stt338. 1212.5842 ADSCrossRefGoogle Scholar
  97. Ho, W.C.G., Andersson, N., Haskell, B.: Revealing the physics of r modes in low-mass X-ray binaries. Phys. Rev. Lett. 107, 101101 (2011).  https://doi.org/10.1103/PhysRevLett.107.101101. 1107.5064
  98. Ho, W.C.G., Espinoza, C.M., Antonopoulou, D., Andersson, N.: Pinning down the superfluid and measuring masses using pulsar glitches. Sci. Adv. 1, e1500578–e1500578 (2015).  https://doi.org/10.1126/sciadv.1500578. 1510.00395 ADSCrossRefGoogle Scholar
  99. Howitt, G., Haskell, B., Melatos, A.: Hydrodynamic simulations of pulsar glitch recovery. Mon. Not. R. Astron. Soc. 460, 1201–1213 (2016).  https://doi.org/10.1093/mnras/stw1043. 1512.07903 ADSCrossRefGoogle Scholar
  100. Israel, W., Stewart, J.M.: Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118, 341–372 (1979) . https://doi.org/10.1016/0003-4916(79)90130-1 ADSMathSciNetCrossRefGoogle Scholar
  101. Jahan-Miri, M.: Flux expulsion and field evolution in neutron stars. Astrophys. J. 532, 514–529 (2000). https://doi.org/10.1086/308528. astro-ph/9910490 ADSCrossRefGoogle Scholar
  102. Jones, P.B.: Rotation of the neutron-drip superfluid in pulsars - the resistive force. Mon. Not. R. Astron. Soc. 243, 257–262 (1990)ADSzbMATHGoogle Scholar
  103. Jones, P.B.: Neutron superfluid spin-down and magnetic field decay in pulsars. Mon. Not. R. Astron. Soc. 253, 279–286 (1991a).  https://doi.org/10.1093/mnras/253.2.279 ADSCrossRefGoogle Scholar
  104. Jones, P.B.: Rotation of the neutron-drip superfluid in pulsars - the interaction and pinning of vortices. Astrophys. J. 373, 208–212 (1991b). https://doi.org/10.1086/170038 ADSCrossRefGoogle Scholar
  105. Jones, P.B.: Rotation of the neutron-drip superfluid in pulsars - the Kelvin phonon contribution to dissipation. Mon. Not. R. Astron. Soc. 257, 501–506 (1992).  https://doi.org/10.1093/mnras/257.3.501 ADSCrossRefGoogle Scholar
  106. Jones, P.B.: Type II superconductivity and magnetic flux transport in neutron stars. Mon. Not. R. Astron. Soc. 365, 339–344 (2006). https://doi.org/10.1111/j.1365-2966.2005.09724.x. astro-ph/0510396 ADSCrossRefGoogle Scholar
  107. Jones, D.I.: Pulsar state switching, timing noise and free precession. MNRAS 420, 2325–2338 (2012). https://doi.org/10.1111/j.1365-2966.2011.20238.x. 1107.3503 ADSCrossRefGoogle Scholar
  108. Jones, D.I., Andersson, N.: Freely precessing neutron stars: model and observations. Mon. Not. R. Astron. Soc. 324, 811–824 (2001). https://doi.org/10.1046/j.1365-8711.2001.04251.x. astro-ph/0011063 ADSCrossRefGoogle Scholar
  109. Kantor, E.M., Gusakov, M.E.: Temperature effects in pulsating superfluid neutron stars. Phys. Rev. D 83, 103008 (2011).  https://doi.org/10.1103/PhysRevD.83.103008. 1105.4040
  110. Kantor, E.M., Gusakov, M.E.: Temperature-dependent r-modes in superfluid neutron stars stratified by muons. ArXiv e-prints (2017). 1705.06027
  111. Kantor, E.M., Gusakov, M.E., Chugunov, A.I.: Observational signatures of neutron stars in low-mass X-ray binaries climbing a stability peak. Mon. Not. R. Astron. Soc. 455, 739–753 (2016).  https://doi.org/10.1093/mnras/stv2352. 1512.02428 ADSCrossRefGoogle Scholar
  112. Kerr, M., Hobbs, G., Johnston, S., Shannon, R.M.: Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession. MNRAS 455, 1845–1854 (2016).  https://doi.org/10.1093/mnras/stv2457. 1510.06078 ADSCrossRefGoogle Scholar
  113. Khalatnikov, I.: An introduction to the theory of superfluidity. Advanced Books Classics Series. Addison-Wesley Publishing Company, Boston (1989)Google Scholar
  114. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1959)Google Scholar
  115. Lander, S.K.: Magnetic fields in superconducting neutron stars. Phys. Rev. Lett. 110, 071101 (2013).  https://doi.org/10.1103/PhysRevLett.110.071101. 1211.3912
  116. Lander, S.K.: The contrasting magnetic fields of superconducting pulsars and magnetars. Mon. Not. R. Astron. Soc. 437, 424–436 (2014).  https://doi.org/10.1093/mnras/stt1894. 1307.7020 ADSCrossRefGoogle Scholar
  117. Langlois, D., Sedrakian, D.M., Carter, B.: Differential rotation of relativistic superfluid in neutron stars. Mon. Not. R. Astron. Soc. 297, 1189–1201 (1998). https://doi.org/10.1046/j.1365-8711.1998.01575.x. astro-ph/9711042 ADSCrossRefGoogle Scholar
  118. Lasky, P.D.: Gravitational waves from neutron stars: a review. Publications of the Astronomical Society of Australia 32, e034 (2015).  https://doi.org/10.1017/pasa.2015.35. 1508.06643
  119. Lee, U., Yoshida, S.: r-modes of neutron stars with superfluid cores. Astrophys. J. 586, 403–418 (2003). https://doi.org/10.1086/367617. astro-ph/0211580 ADSCrossRefGoogle Scholar
  120. Lindblom, L., Mendell, G.: The oscillations of superfluid neutron stars. Astrophys. J. 421 (1994), 689–704. https://doi.org/10.1086/173682 ADSCrossRefGoogle Scholar
  121. Lindblom, L., Mendell, G.: r-modes in superfluid neutron stars. Phys. Rev. D 61, 104003 (2000).  https://doi.org/10.1103/PhysRevD.61.104003. gr-qc/9909084
  122. Link, B.: Constraining hadronic superfluidity with neutron star precession. Phys. Rev. Lett. 91, 101101 (2003).  https://doi.org/10.1103/PhysRevLett.91.101101. astro-ph/0302441
  123. Link, B.: Dynamics of quantum vorticity in a random potential. Phys. Rev. Lett. 102, 131101 (2009).  https://doi.org/10.1103/PhysRevLett.102.131101. 0807.1945
  124. Link, B.: Instability of superfluid flow in the neutron star core. Mon. Not. R. Astron. Soc. 421, 2682–2691 (2012). https://doi.org/10.1111/j.1365-2966.2012.20498.x.1111.0696 ADSCrossRefGoogle Scholar
  125. Link, B.: Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory. Astrophys. J. 789, 141 (2014). https://doi.org/10.1088/0004-637X/789/2/141. 1311.2499 ADSCrossRefGoogle Scholar
  126. Link, B.K., Epstein, R.I.: Mechanics and energetics of vortex unpinning in neutron stars. Astrophys. J. 373 (1991), 592–603. https://doi.org/10.1086/170078 ADSCrossRefGoogle Scholar
  127. Lee, U.: Nonradial oscillations of neutron stars with the superfluid core. Astron. Astrophys. 303, 515 (1995)ADSGoogle Scholar
  128. Lombardo, U., Schulze, H.-J.: Superfluidity in neutron star matter. In: Blaschke, D., Glendenning, N.K., Sedrakian, A. (eds.) Physics of Neutron Star Interiors. Lecture Notes in Physics, vol. 578, p. 30. Springer, Berlin (2001). astro-ph/0012209 Google Scholar
  129. Lombardo, U., Nozières, P., Schuck, P., Schulze, H.-J., Sedrakian, A.: Transition from BCS pairing to Bose-Einstein condensation in low-density asymmetric nuclear matter. Phys. Rev. C 64, 064314 (2001).  https://doi.org/10.1103/PhysRevC.64.064314. nucl-th/0109024
  130. Lombardo, U., Schuck, P., Shen, C.: Screening effects on 1S 0 pairing in nuclear matter. Nucl. Phys. A 731, 392–400 (2004). https://doi.org/10.1016/j.nuclphysa.2003.11.051 ADSCrossRefGoogle Scholar
  131. Mahmoodifar, S., Strohmayer, T.: Upper bounds on r-mode amplitudes from observations of low-mass X-ray binary neutron stars. Astrophys. J. 773, 140 (2013). https://doi.org/10.1088/0004-637X/773/2/140. 1302.1204 ADSCrossRefGoogle Scholar
  132. Marchetti, M.C., Middleton, A.A., Saunders, K., Schwarz, J.M.: Driven depinning of strongly disordered media and anisotropic mean-field limits. Phys. Rev. Lett. 91, 107002 (2003).  https://doi.org/10.1103/PhysRevLett.91.107002. cond-mat/0302275
  133. Mastrano, A., Melatos, A.: Kelvin-Helmholtz instability and circulation transfer at an isotropic-anisotropic superfluid interface in a neutron star. Mon. Not. R. Astron. Soc. 361, 927–941 (2005). https://doi.org/10.1111/j.1365-2966.2005.09219.x. astro-ph/0505529 ADSCrossRefGoogle Scholar
  134. Maurizio, S., Holt, J.W., Finelli, P.: Nuclear pairing from microscopic forces: singlet channels and higher-partial waves. Phys. Rev. C 90, 044003 (2014).  https://doi.org/10.1103/PhysRevC.90.044003. 1408.6281
  135. Melatos, A., Link, B.: Pulsar timing noise from superfluid turbulence. Mon. Not. R. Astron. Soc. 437, 21–31 (2014).  https://doi.org/10.1093/mnras/stt1828. 1310.3108 ADSCrossRefGoogle Scholar
  136. Melatos, A., Peralta, C.: Superfluid turbulence and pulsar glitch statistics. Astrophys. J. 662, L99–L102 (2007). https://doi.org/10.1086/518598. 0710.2455 ADSCrossRefGoogle Scholar
  137. Melatos, A., Peralta, C., Wyithe, J.S.B.: Avalanche dynamics of radio pulsar glitches. Astrophys. J. 672, 1103–1118 (2008). https://doi.org/10.1086/523349. 0710.1021 ADSCrossRefGoogle Scholar
  138. Mendell, G.: Superfluid hydrodynamics in rotating neutron stars. I - Nondissipative equations. II - Dissipative effects. ApJ 380, 515–540 (1991). https://doi.org/10.1086/170609 ADSMathSciNetGoogle Scholar
  139. Mendell, G.: Magnetohydrodynamics in superconducting-superfluid neutron stars. MNRAS 296, 903–912 (1998). https://doi.org/10.1046/j.1365-8711.1998.01451.x. astro-ph/9702032 ADSCrossRefGoogle Scholar
  140. Mendell, G., Lindblom, L.: The coupling of charged superfluid mixtures to the electromagnetic field. Ann. Phys. 205, 110–129 (1991). https://doi.org/10.1016/0003-4916(91)90239-5 ADSzbMATHCrossRefGoogle Scholar
  141. Middleditch, J., Marshall, F.E., Wang, Q.D., Gotthelf, E.V., Zhang, W.L Predicting the starquakes in PSR J0537-6910. Astrophys. J. 652, 1531–1546 (2006). https://doi.org/10.1086/508736. astro-ph/0605007 ADSCrossRefGoogle Scholar
  142. Migdal, A.B.: Superfluidity and the moments of inertia of nuclei. Nucl. Phys. A 13, 655–674 (1959). https://doi.org/10.1016/0029-5582(59)90264-0 MathSciNetzbMATHCrossRefGoogle Scholar
  143. Mühlschlegel, B.: Die thermodynamischen Funktionen des Supraleiters. Zeitschrift fur Physik 155, 313–327 (1959). https://doi.org/10.1007/BF01332932 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  144. Muslimov, A.G., Tsygan, A.I.: Neutron star superconductivity and superfluidity, and the decay of pulsar magnetic fields. Pisma v Astronomicheskii Zhurnal 11, 196–202 (1985a)ADSGoogle Scholar
  145. Muslimov, A.G., Tsygan, A.I.: Vortex lines in neutron star superfluids and decay of pulsar magnetic fields. Astrophys. Space Sci. 115, 43–49 (1985b). https://doi.org/10.1007/BF00653825 ADSCrossRefGoogle Scholar
  146. Muzikar, P., Sauls, J.A., Serene, J.W.: 3P 2 pairing in neutron-star matter: magnetic field effects and vortices. Phys. Rev. D 21, 1494–1502 (1980).  https://doi.org/10.1103/PhysRevD.21.1494 Google Scholar
  147. Newton, W.G., Berger, S., Haskell, B.: Observational constraints on neutron star crust-core coupling during glitches. Mon. Not. R. Astron. Soc. 454, 4400–4410 (2015).  https://doi.org/10.1093/mnras/stv2285. 1506.01445 ADSCrossRefGoogle Scholar
  148. Noronha, J., Sedrakian, A.: Tkachenko modes as sources of quasiperiodic pulsar spin variations. Phys. Rev. D 77, 023008 (2008).  https://doi.org/10.1103/PhysRevD.77.023008. 0708.2876
  149. Page, D., Lattimer, J.M., Prakash, M., Steiner, A.W.: Stellar Superfluids. ArXiv e-prints (2013). 1302.6626
  150. Pavlou, G.E., Mavrommatis, E., Moustakidis, C., Clark, J.W.: Microscopic study of 1S 0 superfluidity in dilute neutron matter. ArXiv e-prints (2016). 1612.02188
  151. Passamonti, A., Andersson, N.: Towards real neutron star seismology: accounting for elasticity and superfluidity. Mon. Not. R. Astron. Soc. 419 (2012), 638–655. https://doi.org/10.1111/j.1365-2966.2011.19725.x. 1105.4787 ADSCrossRefGoogle Scholar
  152. Passamonti, A., Haskell, B., Andersson, N.: Oscillations of rapidly rotating superfluid stars. Mon. Not. R. Astron. Soc. 396, 951–963 (2009). https://doi.org/10.1111/j.1365-2966.2009.14751.x. 0812.3569 ADSCrossRefGoogle Scholar
  153. Passamonti, A., Akgün, T., Pons, J., Miralles, J.A.: On the magnetic field evolution timescale in superconducting neutron star cores. ArXiv e-prints (2017a). 1704.02016
  154. Passamonti, A., Akgün, T., Pons, J.A., Miralles, J.A.: The relevance of ambipolar diffusion for neutron star evolution. Mon. Not. R. Astron. Soc. 465 (2017b), 3416–3428.  https://doi.org/10.1093/mnras/stw2936. 1608.00001 ADSCrossRefGoogle Scholar
  155. Peralta, C., Melatos, A., Giacobello, M., Ooi, A.: Transitions between turbulent and laminar superfluid vorticity states in the outer core of a neutron star. Astrophys. Space Sci. 651, 1079–1091 (2006). https://doi.org/10.1086/507576. astro-ph/0607161 ADSCrossRefGoogle Scholar
  156. Pizzochero, P.M.: Angular momentum transfer in vela-like pulsar glitches. Astrophys. J. 743, L20 (2011). https://doi.org/10.1088/2041-8205/743/1/L20. 1105.0156 ADSCrossRefGoogle Scholar
  157. Pizzochero, P.M., Barranco, F., Vigezzi, E., Broglia, R.A.: Nuclear impurities in the superfluid crust of neutron stars: quantum calculation and observable effects on the cooling. Astrophys. J. 569, 381–394 (2002). https://doi.org/10.1086/339284 ADSCrossRefGoogle Scholar
  158. Pizzochero, P.M., Antonelli, M., Haskell, B., Seveso, S.: Constraints on pulsar masses from the maximum observed glitch. Nat. Astron. 1, 0134 (2017). https://doi.org/10.1038/s41550-017-0134. 1611.10223 ADSCrossRefGoogle Scholar
  159. Pnigouras, P., Kokkotas, K.D.: Saturation of the f -mode instability in neutron stars. II. Applications and results. Phys. Rev. D 94, 024053 (2016).  https://doi.org/10.1103/PhysRevD.94.024053. 1607.03059
  160. Prix, R.: Variational description of multifluid hydrodynamics: uncharged fluids. Phys. Rev. D 69, 043001 (2004).  https://doi.org/10.1103/PhysRevD.69.043001. physics/0209024
  161. Prix, R., Rieutord, M.: Adiabatic oscillations of non-rotating superfluid neutron stars. Astron. Astrophys. 393, 949–963 (2002). https://doi.org/10.1051/0004-6361:20021049. astro-ph/0204520 ADSCrossRefGoogle Scholar
  162. Prix, R., Comer, G.L., Andersson, N.: Inertial modes of non-stratified superfluid neutron stars. Mon. Not. R. Astron. Soc. 348, 625–637 (2004). https://doi.org/10.1111/j.1365-2966.2004.07399.x. astro-ph/0308507 ADSCrossRefGoogle Scholar
  163. Prix, R., Novak, J., Comer, G.L.: Relativistic numerical models for stationary superfluid neutron stars. Phys. Rev. D 71, 043005 (2005).  https://doi.org/10.1103/PhysRevD.71.043005. gr-qc/0410023
  164. Radhakrishnan, V., Manchester, R.N.: Detection of a change of state in the pulsar PSR 0833-45. Nature 222, 228–229 (1969). https://doi.org/10.1038/222228a0 ADSCrossRefGoogle Scholar
  165. Reichley, P.E., Downs, G.S.: Observed decrease in the periods of pulsar PSR 0833-45. . Nature 222, 229–230 (1969). https://doi.org/10.1038/222229a0 ADSCrossRefGoogle Scholar
  166. Ruderman, M.: Neutron starquakes and pulsar periods. Nature 223, 597–598 (1969). https://doi.org/10.1038/223597b0 ADSCrossRefGoogle Scholar
  167. Ruderman, M.: Long period oscillations in rotating neutron stars. Nature 225, 619–620 (1970). https://doi.org/10.1038/225619a0 ADSCrossRefGoogle Scholar
  168. Ruderman, M.: Crust-breaking by neutron superfluids and the VELA pulsar glitches. Astrophys. J. 203, 213–222 (1976). https://doi.org/10.1086/154069 ADSCrossRefGoogle Scholar
  169. Ruderman, M., Zhu, T., Chen, K.: Neutron star magnetic field evolution, crust movement, and glitches. Astrophys. J. 492, 267–280 (1998). https://doi.org/10.1086/305026. astro-ph/9709008 ADSCrossRefGoogle Scholar
  170. Sauls, J.: Superfluidity in the interiors of neutron stars. In: Ögelman, H., van den Heuvel, E.P.J. (eds.) NATO Advanced Science Institutes (ASI) Series C, vol. 262, p. 457 (1989)CrossRefGoogle Scholar
  171. Sauls, J.A., Stein, D.L., Serene, J.W.: Magnetic vortices in a rotating 3P 2 neutron superfluid. Phys. Rev. D 25, 967–975 (1982).  https://doi.org/10.1103/PhysRevD.25.967 ADSCrossRefGoogle Scholar
  172. Schulze, H.-J., Cugnon, J., Lejeune, A., Baldo, M., Lombardo, U.: Medium polarization effects on neutron matter superfluidity. Phys. Lett. B 375, 1–8 (1996). https://doi.org/10.1016/0370-2693(96)00213-4 ADSCrossRefGoogle Scholar
  173. Schwenk, A., Friman, B.: Polarization contributions to the spin dependence of the effective interaction in neutron matter. Phys. Rev. Lett. 92, 082501 (2004).  https://doi.org/10.1103/PhysRevLett.92.082501. nucl-th/0307089
  174. Schwenk, A., Friman, B., Brown, G.E.: Renormalization group approach to neutron matter: quasiparticle interactions, superfluid gaps and the equation of state. Nucl. Phys. A 713, 191–216 (2003). https://doi.org/10.1016/S0375-9474(02)01290-3. nucl-th/0207004 ADSzbMATHCrossRefGoogle Scholar
  175. Sedrakian, A.D.: Vortex repinning in neutron star crusts. Mon. Not. R. Astron. Soc. 277, 225–234 (1995). https://dx.doi.org/10.1093/mnras/277.1.225 ADSGoogle Scholar
  176. Sedrakian, A.: Damping of differential rotation in neutron stars. Phys. Rev. D 58, 021301 (1998).  https://doi.org/10.1103/PhysRevD.58.021301. astro-ph/9806156
  177. Sedrakian, A.: Type-I superconductivity and neutron star precession. Phys. Rev. D 71, 083003 (2005).  https://doi.org/10.1103/PhysRevD.71.083003. astro-ph/0408467
  178. Sedrakian, A.: Rapid rotational crust-core relaxation in magnetars. Astron. Astrophys. 587, L2 (2016). https://doi.org/10.1051/0004-6361/201628068. 1601.00056 ADSCrossRefGoogle Scholar
  179. Sedrakian, A., Clark, J.W.: Nuclear Superconductivity in Compact Stars: BCS Theory and Beyond, p. 135. World Scientific Publishing Co, Singapore (2006)Google Scholar
  180. Sedrakian, A., Cordes, J.M.: Vortex-interface interactions and generation of glitches in pulsars. Mon. Not. R. Astron. Soc. 307, 365–375 (1999). https://doi.org/10.1046/j.1365-8711.1999.02638.x. astro-ph/9806042 ADSCrossRefGoogle Scholar
  181. Sedrakian, A.D., Sedrakian, D.M.: Superfluid core rotation in pulsars. I. Vortex cluster dynamics. Astrophys. J. 447, 305 (1995). https://doi.org/10.1086/175876 ADSCrossRefGoogle Scholar
  182. Sedrakian, A., Wasserman, I.: Perturbations of self-gravitating, ellipsoidal superfluid-normal fluid mixtures. Phys. Rev. D 63, 024016 (2001).  https://doi.org/10.1103/PhysRevD.63.024016. astro-ph/0004331
  183. Sedrakian, A., Wasserman, I.: The tensor virial method and its applications to self-gravitating superfluids. In: Blaschke, D., Glendenning, N.K., Sedrakian, A. (eds.) Physics of Neutron Star Interiors. Lecture Notes in Physics, vol. 578, p. 97. Springer, Berlin (2001). astro-ph/0101527 Google Scholar
  184. Sedrakian, A.D., Sedrakian, D.M., Cordes, J.M., Terzian, Y.: Superfluid core rotation in pulsars. II. Postjump relaxations. Astrophys. J. 447, 324 (1995). https://doi.org/10.1086/175877 ADSCrossRefGoogle Scholar
  185. Sedrakian, D.M., Sedrakian, A.D., Zharkov, G.F.: Type I superconductivity of protons in neutron stars. MNRAS 290, 203–207 (1997).  https://doi.org/10.1093/mnras/290.1.203. astro-ph/9710280 ADSCrossRefGoogle Scholar
  186. Sedrakian, A., Wasserman, I., Cordes, J.M.: Precession of isolated neutron stars. I. effects of imperfect pinning. Astrophys. J. 524, 341–360 (1999). https://doi.org/10.1086/307777. astro-ph/9801188 ADSCrossRefGoogle Scholar
  187. Sedrakian, A., Kuo, T.T.S., Müther, H., Schuck, P.: Pairing in nuclear systems with effective Gogny and V lowk interactions. Phys. Lett. B 576, 68–74 (2003). https://doi.org/10.1016/j.physletb.2003.09.090. nucl-th/0308068 ADSCrossRefGoogle Scholar
  188. Sedrakian, D.M., Hayrapetyan, M.V., Malekian, A.: Toroidal magnetic field of a superfluid neutron star in a postnewtonian approximation. Astrophysics 54, 100–110 (2011). https://doi.org/10.1007/s10511-011-9161-1 ADSCrossRefGoogle Scholar
  189. Sedrakian, A., Huang, X.-G., Sinha, M., Clark, J.W.: From microphysics to dynamics of magnetars. ArXiv e-prints (2017). 1701.00895
  190. Sedrakyan, D.M., Shakhabasyan, K.M.: Superfluidity and the magnetic field of pulsars. Sov. Phys. Usp. 34, 555–571 (1991). https://doi.org/10.1070/PU1991v034n07ABEH002446 ADSCrossRefGoogle Scholar
  191. Seveso, S., Pizzochero, P.M., Haskell, B.: The effect of realistic equations of state and general relativity on the ‘snowplough’ model for pulsar glitches. Mon. Not. R. Astron. Soc. 427, 1089–1101 (2012). https://doi.org/10.1111/j.1365-2966.2012.21906.x. 1205.6647 ADSCrossRefGoogle Scholar
  192. Seveso, S., Pizzochero, P.M. , Grill, F., Haskell, B.: Mesoscopic pinning forces in neutron star crusts. Mon. Not. R. Astron. Soc. 455, 3952–3967 (2016).  https://doi.org/10.1093/mnras/stv2579 ADSCrossRefGoogle Scholar
  193. Sinha, M., Sedrakian, A.: Magnetar superconductivity versus magnetism: neutrino cooling processes. Phys. Rev. C 91, 035805 (2015).  https://doi.org/10.1103/PhysRevC.91.035805. 1502.02979
  194. Shahabasyan, M.K.: Vortex lattice oscillations in rotating neutron stars with quark “CFL” cores. Astrophysics 52, 151–155 (2009). https://doi.org/10.1007/s10511-009-9044-x ADSCrossRefGoogle Scholar
  195. Shahabasyan, K.M., Shahabasyan, M.K.: Oscillations in the angular velocity of pulsars. Astrophysics 54, 111–116 (2011). https://doi.org/10.1007/s10511-011-9162-0 ADSCrossRefGoogle Scholar
  196. Shaham, J.: Free precession of neutron stars - role of possible vortex pinning. Astrophys. J. 214 (1977), 251–260. https://doi.org/10.1086/155249 ADSCrossRefGoogle Scholar
  197. Shen, C., Lombardo, U., Schuck, P.: Screening of nuclear pairing in nuclear and neutron matter. Phys. Rev. C 71, 054301 (2005).  https://doi.org/10.1103/PhysRevC.71.054301. nucl-th/0503008
  198. Sourie, A., Oertel, M., Novak, J.: Numerical models for stationary superfluid neutron stars in general relativity with realistic equations of state. Phys. Rev. D 93, 083004 (2016).  https://doi.org/10.1103/PhysRevD.93.083004. 1602.06228
  199. Srinivasan, G., Bhattacharya, D., Muslimov, A.G., Tsygan, A.J.: A novel mechanism for the decay of neutron star magnetic fields. Curr. Sci. 59, 31–38 (1990)ADSGoogle Scholar
  200. Stairs, I.H., Lyne, A.G., Shemar, S.L.: Evidence for free precession in a pulsar. Nature 406, 484–486 (2000). https://doi.org/10.1038/35020010 ADSCrossRefGoogle Scholar
  201. Stein, M., Sedrakian, A., Huang, X.-G., Clark, J.W.: Spin-polarized neutron matter: critical unpairing and BCS-BEC precursor. Phys. Rev. C 93, 015802 (2016).  https://doi.org/10.1103/PhysRevC.93.015802. 1510.06000
  202. Surace, M., Kokkotas, K.D., Pnigouras, P.: The stochastic background of gravitational waves due to the f-mode instability in neutron stars. Astron. Astrophys. 586 (2016), A86. https://doi.org/10.1051/0004-6361/201527197. 1512.02502 ADSCrossRefGoogle Scholar
  203. Thorne, K.S.: Multiple expansions of gravitational radiation. Rev. Modern Phys. 52, 299–340 (1980).  https://doi.org/10.1103/RevModPhys.52.299 ADSMathSciNetCrossRefGoogle Scholar
  204. Turolla, R., Zane, S., Watts, A.L.: Magnetars: the physics behind observations. A review. Rep. Prog. Phys. 78, 116901 (2015). https://doi.org/10.1088/0034-4885/78/11/116901. 1507.02924 ADSCrossRefGoogle Scholar
  205. van Eysden, C.A.: Short-period pulsar oscillations following a glitch. Astrophys. J. 789, 142 (2014). https://doi.org/10.1088/0004-637X/789/2/142. 1403.1046 ADSCrossRefGoogle Scholar
  206. van Eysden, C.A., Melatos, A.: Pulsar glitch recovery and the superfluidity coefficients of bulk nuclear matter. Mon. Not. R. Astron. Soc. 409, 1253–1268 (2010). https://doi.org/10.1111/j.1365-2966.2010.17387.x. 1007.4360 ADSCrossRefGoogle Scholar
  207. Vardanyan, G.A., Sedrakyan, D.M.: Magnetohydrodynamics of superfluid superconducting mixtures. Sov. Phys. JETP 54, 919 (1981)Google Scholar
  208. Wambach, J., Ainsworth, T.L., Pines, D.: Quasiparticle interactions in neutron matter for applications in neutron stars. Nucl. Phys. A 555, 128–150 (1993). https://doi.org/10.1016/0375-9474(93)90317-Q ADSCrossRefGoogle Scholar
  209. Wasserman, I.: Precession of isolated neutron stars - II. Magnetic fields and type II superconductivity. Mon. Not. R. Astron. Soc. 341, 1020–1040 (2003). https://doi.org/10.1046/j.1365-8711.2003.06495.x. astro-ph/0208378 ADSCrossRefGoogle Scholar
  210. Warszawski, L., Melatos, A.: Gross-Pitaevskii model of pulsar glitches. Mon. Not. R. Astron. Soc. 415, 1611–1630 (2011) . https://doi.org/10.1111/j.1365-2966.2011.18803.x. 1103.6090 ADSCrossRefGoogle Scholar
  211. Warszawski, L., Melatos, A., Berloff, N.G.: Unpinning triggers for superfluid vortex avalanches. Phys. Rev. B 85, 104503 (2012).  https://doi.org/10.1103/PhysRevB.85.104503. 1203.5133
  212. Watanabe, G., Pethick, C.J.: Superfluid density of neutrons in the inner crust of neutron stars: new life for pulsar glitch models. Phys. Rev. Lett. 119, 062701 (2017).  https://doi.org/10.1103/PhysRevLett.119.062701. 1704.08859
  213. Weber, F. (ed.): Pulsars as astrophysical laboratories for nuclear and particle physics (1999)Google Scholar
  214. Wlazłowski, G., Sekizawa, K., Magierski, P., Bulgac, A., Forbes, M.M.: Vortex pinning and dynamics in the neutron star crust. Phys. Rev. Lett. 117, 232701 (2016).  https://doi.org/10.1103/PhysRevLett.117.232701. 1606.04847
  215. Yoshida, S., Lee, U.: r-modes in relativistic superfluid stars. Phys. Rev. D 67, 124019 (2003a).  https://doi.org/10.1103/PhysRevD.67.124019. gr-qc/0304073
  216. Yoshida, S., Lee, U.: Inertial modes of neutron stars with a superfluid core. MNRAS 344, 207–222 (2003b). https://doi.org/10.1046/j.1365-8711.2003.06816.x. astro-ph/0302313 ADSCrossRefGoogle Scholar
  217. Zverev, M.V., Clark, J. W., Khodel, V.A.: 3P 2- 3F 2 pairing in dense neutron matter: the spectrum of solutions. Nucl. Phys. A 720, 20–42 (2003). https://doi.org/10.1016/S0375-9474(03)00653-5. nucl-th/0301028 ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nicolaus Copernicus Astronomical CenterPolish Academy of SciencesWarszawaPoland
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurt-MainGermany

Personalised recommendations