Some Remarks on the Hierarchic Control for Coupled Parabolic PDEs

  • Víctor Hernández-Santamaría
  • Luz de TeresaEmail author
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 17)


In this paper, we study Stackelberg-Nash strategies to control a system of two coupled parabolic equations. We assume that we act in the system by means of a hierarchy of controls. First, a leader (vectorial) control achieve their objectives, and then other controls, named followers, react optimally to the leader action. We prove an observability inequality for an extended system, which yields the Stackelberg-Nash optimization. Then, we remove the action of one of the components of the leader control. In this way, we control a system of various equations by acting only on the first component.


Controllabilty Stackelberg-Nash strategies Carleman inequalities parabolic systems 



This work was partially supported by CONACyT and UNAM-DGAPA-PAPIIT IN102116.


  1. 1.
    Ammar-Khojda, F., Benabdallah, A., Dupaix, C., Kostin, I.: Null controllability of some systems of parabolic type by one control force. ESAIM Control Optim. Calc. Var. 11(3), 426–448 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ammar-Khojda, F., Benabdallah, A., Dupaix C., González-Burgos, M.: A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl. 1(3), 427–457 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ammar-Khojda, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1(3), 267–306 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Araruna, F.D., de Menezes, S.D.B., Rojas-Medar, M.A.: On the approximate controllability of Stackelberg-Nash strategies for linearized micropolar fluids. Appl. Math. Optim. 70(3), 373–393 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Araruna, F.D., Fernández-Cara E., Santos, M.C.: Stackelberg-Nash exact controllability for linear and semilinear parabolic equations. ESAIM Control Optim. Calc. Var. 21(3), 835–856 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Araruna, F. D., Fernández-Cara, E., Guerrero, S., Santos, M. C. New results on the Stackelberg-Nash exact control of linear parabolic equations. Systems Control Lett. 104, 78–85 (2017).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Calsarava, B.M.R., Carreño, N., Cerpa, E.: Insensitizing controls for a phase field system. Nonlinear Anal. 143, 120–137 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chakrabarty, S.P., Hanson, F.B.: Optimal control of drug delivery to brain tumors for a distributed parameters model. In: Proceedings of the American Control Conference, pp. 973–978 (2005)Google Scholar
  9. 9.
    Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Díaz, J.I.: On the von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems. Rev. Real Acad. Cienc. Exact. Fís. Natur. 96(3), 343–356 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    de Teresa, L.: Insensitizing controls for a semilinear heat equation. Commun. Partial Differ. Equ. 25(1–2), 39–72 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fernández-Cara, E., Guerrero, S.: Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45(4), 1395–1446 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.P.: Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83(12), 1501–1542 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fursikov, A., Imanuvilov, O.Y.: Controllability of Evolution Equations. Lecture Notes, Research Institute of Mathematics. Seoul National University, Seoul (1996)Google Scholar
  15. 15.
    González-Burgos, M., de Teresa, L.: Controllability results for cascade systems of m coupled parabolic PDEs by one control force. Port. Math. 67(1), 91–113 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guillén-González, F., Marques-Lopes, F., Rojas-Medar, M.: On the approximate controllability of Stackelberg-Nash strategies for Stokes equations. Proc. Am. Math. Soc. 141(5), 1759–1773 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hernández-Santamaría, V., de Teresa, L., Poznyak, A.: Hierarchic control for a coupled parabolic system. Port. Math. 73(2), 115–137 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Imanuvilov, O.Y., Yamamoto, M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39(2), 227–274 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Limaco, F., Clark, H.R., Medeiros, L.A.: Remarks on hierarchic control. J. Math. Anal. Appl. 359(1), 368–383 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lions, J.-L.: Hierarchic control. Indian Acad. Sci. Proc. Math. Sci. 104(1), 295–304 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lions, J.-L.: Some remarks on Stackelberg’s optimization. Math. Models Methods Appl. Sci. 4(4), 477–487 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nagai, T., Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30(3), 463–497 (2000)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)MathSciNetCrossRefGoogle Scholar
  24. 24.
    von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Vienna (1934)Google Scholar
  25. 25.
    Zabczyk, J.: Mathematical Control Theory: An Introduction. Birkhäuser, Boston (1992)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Víctor Hernández-Santamaría
    • 1
  • Luz de Teresa
    • 2
    Email author
  1. 1.Depto. de Control AutomáticoCINVESTAV-IPNCiudad de MéxicoMexico
  2. 2.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations