Advertisement

Effect of Thermal Stress on Power Conversion Efficiency of PCDTBT:PC71BM Organic Solar Cells

  • Shiv Kumar DixitEmail author
  • Chhavi Bhatnagar
  • Joginder Singh
  • P. K. Bhatnagar
  • Koteswara Rao Peta
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

The effect of thermal stress on poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC71 BM) composite films based organic solar cells has been examined. The optical absorption spectra of PCDTBT:PC71BM composite shows that absorption remains almost unchanged till ~150 °C. However, the absorption peak falls by more than 30% for the film annealed at 200 °C. It has also been observed that photoluminescence (PL) of the PCDTBT:PC71BM composite films is best quenched by an order of magnitude at an annealing temperature of 150 °C showing a significant transfer of electrons from donor to acceptor. The maximum photo conversion efficiency (PCE) of the solar cell has been found to increase significantly (from 0.51 to ~2.25%) for sample annealed at 150 °C and beyond that it starts decreasing.

Notes

Acknowledgements

Authors wish to thank UGC, India and MNRE, India for the financial assistance. Authors also wish to thank University of Delhi and Amity University, Noida for providing infrastructure and the facilities to carry out the research.

References

  1. 1.
    X. Man-Jun, S. Wen-Fei, W. Jun-Yi, H. Liang-Liang, C. Wei-Chao, B. Xi-Chang, Y. Ren-Qiang, Z. Wei-Guo, Efficient annealing-free P3HT: PC61BM-based organic solar cells by using a novel solvent additive without a halogen or sulphur atom. Chin. Phys. Lett. 32(2), 028802 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    N. Gasparini, M. Salvador, S. Strohm, T. Heumueller, I. Levchuk, A. Wadsworth, J.H. Bannock, J.C. de Mello, H.J. Egelhaaf, D. Baran, Burn‐in free nonfullerene‐based organic solar cells. Adv. Energy Mater. 7(19) (2017)CrossRefGoogle Scholar
  3. 3.
    M.V. Srinivasan, N. Tsuda, P.-K. Shin, S. Ochiai, Performance evaluation of PTB7: PC71BM based organic solar cells fabricated by spray coating method using chlorine free solvent. RSC Adv. 5(69), 56262–56269 (2015)CrossRefGoogle Scholar
  4. 4.
    E.A. Parlak, T. Aslı Tumay, N. Tore, Ş. Sarıoğlan, P. Kavak, F. Türksoy, Efficiency improvement of PCDTBT solar cells with silver nanoparticles. Sol. Energy Mater. Sol. Cells 110, 58–62 (2013)CrossRefGoogle Scholar
  5. 5.
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    A.J. Moulé, K. Meerholz, Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Adv. Func. Mater. 19(19), 3028–3036 (2009)CrossRefGoogle Scholar
  7. 7.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92(7), 686–714 (2008)CrossRefGoogle Scholar
  9. 9.
    M.O. Reese, A.J. Morfa, M.S. White, N. Kopidakis, S.E. Shaheen, G. Rumbles, D.S. Ginley, Pathways for the degradation of organic photovoltaic P3HT: PCBM based devices. Sol. Energy Mater. Sol. Cells 92(7), 746–752 (2008)CrossRefGoogle Scholar
  10. 10.
    G. Fang, J. Liu, Y. Fu, B. Meng, B. Zhang, Z. Xie, L. Wang, Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures. Org. Electron. 13(11), 2733–2740 (2012)CrossRefGoogle Scholar
  11. 11.
    S.K. Dixit, S. Madan, D. Madhwal, J. Kumar, I. Singh, C. Bhatia, P. Bhatnagar, P. Mathur, Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT: CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell. Org. Electron. 13(4), 710–714 (2012)CrossRefGoogle Scholar
  12. 12.
    M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18(6), 789–794 (2006)CrossRefGoogle Scholar
  13. 13.
    Z. Li, C.R. McNeill, Transient photocurrent measurements of PCDTBT: PC70BM and PCPDTBT: PC70BM solar cells: evidence for charge trapping in efficient polymer/fullerene blends. J. Appl. Phys. 109(7), 074513 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    N. Blouin, A. Michaud, M. Leclerc, A low-bandgap poly (2, 7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 19(17), 2295–2300 (2007)CrossRefGoogle Scholar
  15. 15.
    S.K. Dixit, Conducting polymer based hybrid solar cells. Ph.D. Thesis, University of Delhi (2014)Google Scholar
  16. 16.
    W. Potscavage, S. Yoo, B. Domercq, B. Kippelen, Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition. Appl. Phys. Lett. 90(25), 253511 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    D. Môn, A.M. Higgins, D. James, M. Hampton, J.E. Macdonald, M.B. Ward, P. Gutfreund, S. Lilliu, J. Rawle, Bimodal crystallization at polymer–fullerene interfaces. Phys. Chem. Chem. Phys. 17(3), 2216–2227 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Etzold, I.A. Howard, R. Mauer, M. Meister, T.-D. Kim, K.-S. Lee, N.S. Baek, F. Laquai, Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT: PCBM photovoltaic blends. J. Am. Chem. Soc. 133(24), 9469–9479 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Cho, J.H. Seo, S.H. Park, S. Beaupré, M. Leclerc, A.J. Heeger, A thermally stable semiconducting polymer. Adv. Mater. 22(11), 1253–1257 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shiv Kumar Dixit
    • 1
    • 2
    Email author
  • Chhavi Bhatnagar
    • 1
  • Joginder Singh
    • 1
  • P. K. Bhatnagar
    • 1
  • Koteswara Rao Peta
    • 1
  1. 1.Department of Electronic ScienceUniversity of DelhiNew DelhiIndia
  2. 2.Manav Rachna UniversityFaridabadIndia

Personalised recommendations