Investigation of Active Layer Thickness Variation on the Performance of Bulk Heterojunction Organic Solar Cells

  • Sakshi KoulEmail author
  • Najeeb-ud-Din Hakim
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


The active layer thickness dependence of bulk heterojunction organic solar cells with two different donor and acceptor material combination is studied. For one organic solar cell, poly(3-hexylthiophene): P3HT is taken as the electron donor with phenyl-C61-butyric acid methyl ester: PCBM as the electron acceptor. Another active layer blend has poly(9,9-dioctylindenofluorene-co-benzothiadiazole): PIF8BT and N′-bis(1-ethylpropyl)-3,4,9,10-perylene tetracarboxy diimide: PDI as the donor-acceptor material. We simulate the cells with the two different active layer combinations and investigate the organic solar cell parameters with respect to the active layer thickness variation.


  1. 1.
    J.M. Nunzi, Organic photovoltaic materials and devices. C. R. Phys. 3, 523–542 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics 6, 153–161 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    G. Dennler, C. Lungenschmied, H. Neugebauer, N.S. Sariciftci, A. Labouret, Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: basics, encapsulation, and integration. J. Mater. Res. 20, 3224–3233 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    M. Lenes, L.J.A. Koster, Thickness dependence of the efficiency of polymer: fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 1–3 (2006)CrossRefGoogle Scholar
  5. 5.
    D.H. Apaydın, D.E. Yıldız, A. Cirpan, L. Toppare, Optimizing the organic solar cell efficiency: role of the active layer thickness. Sol. Energy Mater. Sol. Cell 113, 100–105 (2013)CrossRefGoogle Scholar
  6. 6.
    G. Namkoong, J. Kong, M. Samson, I.W. Hwang, K. Lee, Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells. Org. Electron. 14, 74–79 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.M. Nam, J. Huh, W.H. Jo, Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 94, 1118–1124 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16, 45–61 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Spanggaard, F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 83, 125–146 (2004)CrossRefGoogle Scholar
  10. 10.
    M.C. Scharber, N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Boland, G. Namkoong, Optimization of active layer thickness in planar organic solar cells via optical simulation methods. Jpn. J. Appl. Phys. 49(3R), 030205 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of Technology SrinagarSrinagarIndia

Personalised recommendations