Light Emitting Diode and UV Photodetector Characteristics of Solution Processed n-ZnO Nanorods/p-Si Heterostructures

  • Chandni Kumari
  • Ambesh DixitEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


n-ZnO nanorod/p-si hetrojunction diode is synthesized using a simple chemical solution method on p-type silicon substrates for light emitting diode applications. The grown ZnO nanorods showed highly textured hexagonal crystallographic phase along c-axis. An intense band to band photoluminescence peak is observed at 377 nm in conjunction with the weak deep-level emissions in visible region centred at 500 nm. The current–voltage measurements show diode-like characteristics. The work will also discuss the emission response with bias field for these solution processed n-ZnO/p-Si heterostructures under dark and UV conditions in the context of possible UV photo-response and light emitting diode applications.


Diode LEDs Nanorods ZnO 


  1. 1.
    S.J. Pearton, D.P. Norton, K. Ip et al., Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293–340 (2005). Scholar
  2. 2.
    Ü. Özgür, Y.I. Alivov, C. Liu et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005). Scholar
  3. 3.
    M.H. Huang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 292, 1897–1899 (2001). Scholar
  4. 4.
    J.H. Choy, E.S. Jang, J.H. Won et al., Soft solution route to directionally grown ZnO Nanorod arrays on si wafer; room-temperature ultraviolet laser. Adv. Mater. 15, 1911–1914 (2003). Scholar
  5. 5.
    W.I. Park, D.H. Kim, S.W. Jung, G.C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232–4234 (2002). Scholar
  6. 6.
    Park W. Il, G.C. Yi, M. Kim, S.J. Pennycook, ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 14, 1841–1843 (2002). Scholar
  7. 7.
    W.Z. Xu, Z.Z. Ye, Y.J. Zeng et al., ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett. 88, 2004–2007 (2006). Scholar
  8. 8.
    A. Tsukazaki, M. Kubota, A. Ohtomo, et al., Blue light-emitting diode based on ZnO. Japn. J. Appl. Phys. Part 2 Lett. 44 (2005). Scholar
  9. 9.
    P. Zu, Z.K. Tang, G.K.L. Wong et al., Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103, 459–463 (1997). Scholar
  10. 10.
    Y. Sun, J.B. Ketterson, G.K.L. Wong, Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder. Appl. Phys. Lett. 77, 2322 (2000). Scholar
  11. 11.
    D. Bagnall, Y. Chen, Z. Zhu et al., High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett. 73, 1038–1040 (1998). Scholar
  12. 12.
    A.B. Djurišić, W.C.H. Choy, V.A.L. Roy et al., Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv. Funct. Mater. 14, 856–864 (2004). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology JodhpurJodhpurIndia
  2. 2.Center for Solar EnergyIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations