Advertisement

Enhanced Cold Cathode Electron Emission from ZnO Nanostructure Attached Amorphous Carbon Nanotubes

  • Supratim MaityEmail author
  • Kalyan Kumar Chattopadhyay
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

Amorphous carbon nanotubes (aCNTs) were produced by simple low temperature synthesis technique. In this synthesis technique a chemical reaction occurs between ferrocene and ammonium chloride at a temperature ~250 °C in an air furnace. Flower like zinc oxide (ZnO) nanostructure were attached with the aCNTs. The as synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). ZnO-aCNT hybrid nanostructure exhibited enhanced field emission properties with a turn-on field as low as 2.6 V/μm. The improvement of the field emission property may be attributed to the high enhancement factor and increased roughness of the hybrid sample.

References

  1. 1.
    A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269, 1550 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    W.A. De Heer, A. Châtelan, D. Ugarte, Science 270, 1179 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. Collins, A. Zettl, Appl. Phys. Lett. 69, 969 (1996)CrossRefGoogle Scholar
  4. 4.
    S. Shrestha, W.C. Choi, W. Song, Y.T. Kwon, S.P. Shrestha, C.Y. Park, Carbon 48, 54 (2010)CrossRefGoogle Scholar
  5. 5.
    Y.M. Ho, W.T. Zheng, Y.A. Li, J.W. Liu, J.L. Qi, J. Phys. Chem. C 112, 17702 (2008)CrossRefGoogle Scholar
  6. 6.
    S. Neupane, M. Lastres, M. Chiarella, W. Li, Q. Su, G. Du, Carbon 50, 2641 (2012)CrossRefGoogle Scholar
  7. 7.
    W.H. Lin, Y.Y. Li, Diam. Relat. Mater. 22, 124 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    I. Lahiri, R. Seelaboyina, J.Y. Hwang, R. Banerjee, W. Choi, Carbon 48, 1531 (2010)CrossRefGoogle Scholar
  9. 9.
    W.S. Kim, H. Oki, A. Kinoshita, K. Murakami, S. Abo, F. Wakaya, M. Takai, J. Vac. Sci. Technol., B 26, 760 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Maity, S. Goswami, K.K. Chattopadhyay, RSC Adv. 3, 26321 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Maity, A. Jha, N.S. Das, K.K. Chattopadhyay, Appl. Phys. A 110, 493 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Wang, X.-F. Qian, J. Yin, Z.-K. Zhu, Langmuir 20, 3441 (2004)CrossRefGoogle Scholar
  13. 13.
    R.H. Fowler, L. Nordheim, Proc. R. Soc. Lond. A 119, 173 (1928)ADSCrossRefGoogle Scholar
  14. 14.
    C.-S. Huang, C.-Y. Yeh, Y.-H. Chang, Y.-M. Hsieh, C.-Y. Ku, Q.-T. Lai, Diam. Relat. Mater. 18, 452 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Thin Film & Nanoscience Laboratory, Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations