Advertisement

Numerical Analysis on the Phenomenon of Absorptive Bistability in Quantum Cascade Lasers

  • P. AshokEmail author
  • M. Ganesh Madhan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)

Abstract

A detailed numerical analysis on the phenomenon of absorptive bistability in mid infrared quantum cascade lasers (QCLs) is carried out by solving the standard two-level rate equations for the gain and absorber sections of the laser concurrently. This analysis accounts for the steady state and dynamic behavior of the bistable QCL containing two semiconductor elements. The dependence of threshold current, Steady state photon number, electron number in different levels of gain and absorber sections, hysteresis width on the biasing currents in both the sections are investigated thoroughly. This study also accounts for a reduction in threshold current from 1.21 to 0.9 A as the absorber current is increased from 0 to 10 mA. The bistable behavior is also realized by providing a current pulse of amplitude 0.2 A dc biased at 1.2 A. The output is switched off by injecting a negative pulse of amplitude 0.5 A dc biased at 1.2 A.

References

  1. 1.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553–556 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori, 300 K operation of a GaAs-based quantum-cascade laser at λ = 9 μm. Appl. Phys. Lett. 78(22), 3529–3531 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    W.H. Ng, E.A. Zibik, M.R. Soulby, L.R. Wilson, J.W. Cockburn, H.Y. Liu, M.J. Steer, M. Hopkinson, Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K. J. Appl. Phys. 101(4), 046103-1–046103-3 (2007)Google Scholar
  4. 4.
    G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A.L. Hutchinson, D.L. Sivco, A.Y. Cho, High-power infrared (8-micrometer wavelength) superlattice lasers. Science 276, 773–776 (1997)CrossRefGoogle Scholar
  5. 5.
    S. Anders, W. Schrenk, E. Gornik, G. Strasser, Room-temperature emission of GaAs/AlGaAs superlattice quantum-cascade lasers at 12.6 μm. Appl. Phys. Lett. 80(11), 1864–1866 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    D. Hofstetter, M. Beck, T. Aellen, J. Faist, High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm. Appl. Phys. Lett. 78(4), 396–398 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    J. Faist, M. Beck, T. Aellen, E. Gini, Quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett. 78(2), 147–149 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    C. Walther, G. Scalari, J. Faist, H. Beere, D. Ritchie, Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz. Appl. Phys. Lett. 89(23), 231121-1–231121-3 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    C. Qi, X. Shi, S. Ye, J. Jiang, Circuit model of quantum cascade lasers for simulation of influence of doping density, in IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (2013), pp. 1–2Google Scholar
  10. 10.
    C. Qi, X. Xia, X. Shi, S. Ye, Circuit-level thermal model of intermediate infrared quantum cascade lasers, in IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (2013), pp. 1–2Google Scholar
  11. 11.
    W. Zhou, S. Liu, J. Wu, X. Zhang, W. Tang, Equivalent Circuit level model and improvement of terahertz quantum cascade lasers. Quantum Electron. 4(44), 289–293 (2014)Google Scholar
  12. 12.
    J.F. Webb, M.K. Haldar, Improved two level model of mid-infrared quantum cascade lasers for analysis of direct intensity modulation response. J. Appl. Phys. 111, 043110 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Hamadou, S. Lamari, J.L. Thorbel, Dynamic modeling of a mid infrared quantum cascade laser. J. Appl. Phys. 105, 093116 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    K.S.C. Yong, M.K. Haldar, J.F. Webb, An equivalent circuit for quantum cascade lasers. J. Infrafred Milli Terahz Waves. 34, 586–597 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Kawaguchi, Absorptive and dispersive bistability in semiconductor injection lasers. Opt. Quantum Electron. 19, S1–S36 (1987)CrossRefGoogle Scholar
  16. 16.
    M. Ganesh Madhan, P.R. Vaya, N. Gunasekaran, Circuit modelling of multimode bistable laser diodes. IEEE Photonics Technol. Lett. 11(1), 27–29 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    M. Ganesh Madhan, P.R. Vaya, N. Gunasekaran, A new bistable laser diode configuration for all optical switching. IEEE Photonics Technol. Lett. 11(6), 644–646 (1999)Google Scholar
  18. 18.
    H. Wenzel, U. Bandelow, H.-J. Wunsche, J. Rehberg, Mechanisms of fast self pulsations in two-section DFB lasers. IEEE J. Quantum Electron. 32, 69–78 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    H. Uenohara, Y. Kawamura, H. Iwamura, Long-wavelength multiple-quantum-well voltage-controlled bistable laser diodes. IEEE J. Quantum Electron. 31, 2142–2147 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    S.L. Lu, L. Schrottke, S.W. Teitsworth, R. Hey, Negative differential conductance and bistability in undoped GaAs/(Al,Ga)As quantum-cascade structures. J. Appl. Phys. 100(2), 023701-1–023701-6 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    D.G. Allen, S. Albuquerque, T.W. Hargett, J.L. Reno, M.C. Wanke, Optical bistability from domain formation in terahertz quantum cascade lasers. IEEE J. Quantum Electron. 17, 222–228 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Madras Institute of TechnologyAnna UniversityChennaiIndia

Personalised recommendations