Investigations on the Effects of 150 MeV Ag Ion Irradiations on 4H–SiC

  • A. Ashraf AliEmail author
  • J. Kumar
  • V. Ramakrishnan
  • K. Asokan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


Investigations have been carried out on the morphological and the optical properties of 4H–Silicon Carbide (SiC) wafers after the 150 meV Ag ion irradiation for the fluences 5E10,1E11, 5E11, 1E12, 5E12 and 1E13 ions/cm2. The SRIM calculations show that the penetration depth of Ag ions is ~11.90 μm and the electronic energy loss (Se) is dominant compared to the nuclear loss energy (Sn) and the modifications are due to Se. The images from atomic force microscopy (AFM) show the formation of Quantum Dot (QD) like nano-structures at low fluences which develop into triangular island like structures with increasing the ion fluence. The surface roughness of the sample increases after the irradiation due to the formation of triangular islands. Raman spectra show change in the intensity of the standard modes of 4H–SiC with a shift in the E2 (TO) mode. At the fluence of 5E10 ions/cm2, there is a formation of a shoulder in A1 (LO) optical mode which disappears as the fluence increases. The Raman mapping of the samples show that the irradiation is uniform.


  1. 1.
    W. Wesch, Nucl. Instrum. Methods Phys. Res. Sect. B 116, 305–321 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    M.B.J. Wijesundara, R.G. Azevedo, Silicon carbide microsystems for harsh environments (2011)Google Scholar
  3. 3.
    S. Lin, Z. Chen, B. Liu, L. Li, X. Feng, J. Mater. Sci. Mater. Electron. 21, 326–330 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Lin, Z. Chen, D. Jiang, P. Liang, J. Wan, B. Liu, H. Xie, X. Feng, Int. J. Mater. Res. 101, 1514–1518 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Lin, Z. Chen, P. Liang, D. Jiang, H. Xie, Y. Yang, J. Alloys and Comp. 489, 56–58 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Lin, Z. Chen, S. Liu, Y. Yang, X. Feng, Y. Yang, M. Yang, C. Yang, J. Mater. Sci. 47, 3429–3434 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Lin, Z. Chen, Y. Yang, S. Liu, Y. Ba, L. Li, C. Yang, Cryst. Eng. Comm. 14, 1588–1594 (2012)CrossRefGoogle Scholar
  8. 8.
    E. Oliviero, M.F. Beaufort, J.F. Barbot, J. Appl. Phys. 93, 231–238 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    S. Nakashima, H. Harima, Physica Status Solidi 162, 39–64 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    S. Lin, Z. Chen, P. Liang, Y. Ba, S. Liu, Cryst. Eng. Comm. 13, 2709–2713 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Lin, Z. Chen, X. Feng, Y. Yang, L. Li, Z. Wang, P. Pan, J. Wan, H. Wang, Y. Ba, Y. Ma, Q. Li, Diam. Relat. Mater. 20, 516–519 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Nakashima, Y. Nakatake, H. Harima, M. Katsuno, N. Ohtani, Appl. Phys. Lett. 77, 3612–3614 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Y.M. Lua, I.C. Leu, Thin Solid Films 377–378, 389–393 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    W. Bolse, J. Conrad, T. Rödle, T. Weber, Surf. Coat. Technol. 74–75, 927–931 (1995)CrossRefGoogle Scholar
  15. 15.
    J.C. Burton, L. Sun, M. Pophristic, S.J. Lukacs, F.H. Long, Z.C. Feng, I.T. Ferguson, J. Appl. Phys. 84, 6268–6273 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    F. Ziegler, J.P. Biersack, Stopping and range of ions in matter (SRIM) (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. Ashraf Ali
    • 1
    Email author
  • J. Kumar
    • 1
  • V. Ramakrishnan
    • 2
  • K. Asokan
    • 3
  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia
  2. 2.Indian Institute of Science Education and ResearchThiruvanthapuramIndia
  3. 3.Inter-University Accelerator CentreNew DelhiIndia

Personalised recommendations