Silicon Etching Characteristics in Modified TMAH Solution

  • Veerla SwarnalathaEmail author
  • Avvaru Venkata Narasimha Rao
  • Prem Pal
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


In the present work, we have studied the etching characteristics of Si{100} and Si{110} in modified low concentration TMAH solution by adding different concentrations of NH2OH. The etch rate of silicon and thermal oxide, and etched surface morphology, which are important parameters to be known in the fabrication of MEMS structures using silicon wet bulk micromachining, have been studied in modified TMAH solution. In addition, the effect of aging time of the etchant solution on the etching characteristics is investigated.



This work was supported by the DST and the CSIR, New Delhi, India.


  1. 1.
    P. Pal, K. Sato (eds.), Silicon Wet Bulk Micromachining for MEMS (CRC Press, Singapore, 2017)Google Scholar
  2. 2.
    A. Ashok, P. Pal, Silicon micromachining in 25 wt% TMAH without and with surfactant concentrations ranging from ppb to ppm. Microsyst. Technol. 23, 47–54 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Frühauf, Shape and functional elements of the bulk silicon microtechnique: a manual of wet-etched silicon structures (Springer, 2005)Google Scholar
  4. 4.
    I. Zubel, M. Kramkowska, Possibilities of extension of 3D shapes by bulk micromachining of different Si (hkl) substrates. J. Micromech. Microeng. 15, 485–493 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    P. Pal, K. Sato, Complex three dimensional structures in Si{100} using wet bulk micromachining. J. Micromech. Microeng. 19, 105008 (9pp) (2009)ADSCrossRefGoogle Scholar
  6. 6.
    S. Lee, S. Park, D. Cho, The surface/bulk micromachining (SBM) process: a new method for fabricating released microelectromechanical systems in single crystal silicon. J. Microelectromech. Syst. 8, 409–416 (1999)CrossRefGoogle Scholar
  7. 7.
    Y.W. Xu, A. Michael, C.Y. Kwok, Formation of ultra-smooth 45° micromirror on (100) silicon with low concentration TMAH and surfactant: techniques for enlarging the truly 45° portion. Sens. Actuators A Phys. 166, 164–171 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Pal, K. Sato, Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes. Microsyst. Technol. 16, 1165–1174 (2010)CrossRefGoogle Scholar
  9. 9.
    T. Deng, J. Chen, W. Si, M. Yin, W. Ma, Z. Liu, Fabrication of silicon nanopore arrays using a combination of dry and wet etching. J. Vac. Sci. Technol. Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30, 061804 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Elwenspoek, H. Jansen, Silicon Micromachining (Cambridge University Press, UK, 1998)Google Scholar
  11. 11.
    P. Pal, K. Sato, A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching. Micro Nano Syst. Lett. 3, 6 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sens. Actuators A 73, 131–137 (1999)CrossRefGoogle Scholar
  13. 13.
    P. Pal, K. Sato, M.A. Gosalvez, B. Tang, H. Hida, M. Shikida, Fabrication of novel microstructures based on orientation-dependent adsorption of surfactant molecules in a TMAH solution. J. Micromech. Microeng. 21, 015008 (2010)CrossRefGoogle Scholar
  14. 14.
    P.H. Chen, H.Y. Peng, C.M. Hsieh, M.K. Chyu, The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer. Sens. Actuators A 93, 132–137 (2001)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, W.C. Hon, L.L. Leung, K.J. Chen, CMOS-compatible micromachining techniques for fabricating high-performance edge-suspended RF/microwave passive components on silicon substrates. J. Micromech. Microeng. 15, 328 (2004)CrossRefGoogle Scholar
  16. 16.
    M.A. Gosalvez, P. Pal, N. Ferrando, H. Hida, K. Sato, Experimental procurement of the complete 3D etch rate distribution of Si in anisotropic etchants based on vertically micromachined wagon wheel samples. J. Micromech. Microeng. 21, 125007 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, S. Amon, The role of Triton surfactant in anisotropic etching of 110 reflective planes on (100) silicon. J. Micromech. Microeng. 15, 1174–1183 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    D. Cheng, M.A. Gosálvez, T. Hori, K. Sato, M. Shikida, Improvement in smoothness of anisotropically etched silicon surfaces: effects of surfactant and TMAH concentrations. Sens. Actuators A Phys. 125, 415–421 (2006)CrossRefGoogle Scholar
  19. 19.
    P. Pal, K. Sato, M.A. Gosalvez, M. Shikida, Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants. J. Micromech. Microeng. 17, 2299–2307 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    C.R. Yang, P.Y. Chen, C.H. Yang, Y.C. Chiou, R.T. Lee, Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions. Sen. Actuators A Phys. 119, 271–281 (2005)CrossRefGoogle Scholar
  21. 21.
    K. Sato, D. Uchikawa, M. Shikida, Change in orientation-dependent etching properties of single-crystal silicon caused by a surfactant added to TMAH solution. Sens. Mater. 13, 285–291 (2001)Google Scholar
  22. 22.
    P. Pal, K. Sato, M.A. Gosalvez, Y. Kimura, K.I. Ishibashi, M. Niwano, H. Hida, B. Tang, S. Itoh, Surfactant adsorption on single-crystal silicon surfaces in TMAH solution: rientation-dependent adsorption detected by in situ infrared spectroscopy. J. Microelectromech. Syst. 18, 1345–1356 (2009)CrossRefGoogle Scholar
  23. 23.
    R. Sotoaka, New etchants for high speed anisotropic etching of silicon. J. Surf. Finish. Soc. Jpn. 59, 104 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Yao, B. Tang, K. Sato, W. Su, Silicon anisotropic etching in Triton-mixed and isopropyl alcohol-mixed tetramethyl ammonium hydroxide solution. Micro Nano Lett. 10, 469–471 (2015)CrossRefGoogle Scholar
  25. 25.
    I. Zubel, M. Kramkowska, K. Rola, Silicon anisotropic etching in TMAH solutions containing alcohol and surfactant additives. Sens. Actuators A 178, 126–135 (2012)CrossRefGoogle Scholar
  26. 26.
    V. Swarnalatha, A.N. Rao, A. Ashok, S.S. Singh, P. Pal, Modified TMAH based etchant for improved etching characteristics on Si 100 wafer. J. Micromech. Microeng. 27, 085003 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    B. Tang, P. Pal, M.A. Gosalvez, M. Shikida, K. Sato, H. Amakawa, S. Itoh, Ellipsometry study of the adsorbed surfactant thickness on Si{110} and Si{100} and the effect of pre-adsorbed surfactant layer on etching characteristics in TMAH. Sens. Actuators A 156, 334–341 (2009)CrossRefGoogle Scholar
  28. 28.
    V. Swarnalatha, A.V.N. Rao, P. Pal, Silicon anisotropic etching in ternary solution composed of TΜΑΗ + Triton + NH2ΟΗ. ECS Trans. 77, 1737–1745 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137, 3612–3626 (1990)CrossRefGoogle Scholar
  30. 30.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants. J. Electrochem. Soc. 137, 3626–3632 (1990)CrossRefGoogle Scholar
  31. 31.
    L.O. Cisneros, W.J. Rogers, M.S. Mannan, Comparison of the thermal decomposition behavior for members of the hydroxylamine family. Thermochim. Acta 414, 177–183 (2004)CrossRefGoogle Scholar
  32. 32.
    M.N. Hughes, H.G. Nicklin, Autoxidation of hydroxylamine in alkaline solutions. J. Chem. Soc. A Inorg. Phys. Theor., 164–168 (1971)Google Scholar
  33. 33.
    C. Wei, S.R. Saraf, W.J. Rogers, M.S. Mannan, Thermal runaway reaction hazards and mechanisms of hydroxylamine with acid/base contaminants. Thermochim. Acta 421, 1–9 (2004)CrossRefGoogle Scholar
  34. 34.
    L.O. Cisneros, X. Wu, W.J. Rogers, M.S. Mannan, J. Park, S.W. North, Decomposition products of 50 mass% hydroxylamine/water under runaway reaction conditions. Process Saf. Environ. Prot. 81, 121–124 (2003)CrossRefGoogle Scholar
  35. 35.
    M. Shikida, T. Masuda, D. Uchikawa, K. Sato, Surface roughness of single-crystal silicon etched by TMAH solution. Sens. Actuators A Phys. 90, 223–231 (2001)CrossRefGoogle Scholar
  36. 36.
    E. Van Veenendaal, K. Sato, M. Shikida, J. Van Suchtelen, Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH. Sens. Actuators A Phys. 93, 219–231 (2001)CrossRefGoogle Scholar
  37. 37.
    M.A. Gosálvez, R.M. Nieminen, Surface morphology during anisotropic wet chemical etching of crystalline silicon. New J. Phys. 5, 100.1–100.28 (2003)Google Scholar
  38. 38.
    B. Tang, M.Q. Yao, G. Tan, P. Pal, K. Sato, W. Su, Smoothness control of wet etched Si{100} surfaces in TMAH + Triton. Key Eng. Mat. 609, 536–541 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Veerla Swarnalatha
    • 1
    Email author
  • Avvaru Venkata Narasimha Rao
    • 1
  • Prem Pal
    • 1
  1. 1.MEMS and Micro/Nano Systems Laboratory, Department of PhysicsIndian Institute of Technology HyderabadKandi, SangareddyIndia

Personalised recommendations