Advertisement

Biologic Solutions for Articular Cartilage Healing

  • F. Perdisa
  • L. Andriolo
  • R. De Filippis
  • E. Kon
  • G. Filardo
Chapter

Abstract

Post-traumatic articular defects are debilitating conditions. The biomechanical, metabolic, and biological changes due to injury accelerate the wear of articular cartilage, eventually leading to osteoarthritis (OA).

Treatment goals of articular fractures involve accurate fragment reduction and stable fixation, in order to restore native anatomy. However, direct mechanical injury to articular cartilage and the injury-related inflammatory response, as well as concurrent joint injuries, frequently lead to progressive degeneration of the articular surface and ultimately OA.

Proper intra-articular fracture treatment should consider all factors, which may contribute to the development of OA. Once joint congruity, stability, and alignment are restored, different strategies can be applied in order to address the residual articular cartilage lesion. Besides conventional reconstructive strategies, innovative biologic and tissue-engineered ones have been made available more recently, increasing the possibilities of intervention and showing promising results. However, only limited evidence is yet available, and further studies are necessary to prove their effectiveness for these novel forms of articular cartilage lesion management.

Keywords

Cartilage Injury Intra-articular fracture Cartilage healing 

References

  1. Andrade R, Vasta S, Pereira R et al (2016) Knee donor-site morbidity after mosaicplasty—a systematic review. J Exp Orthop 3:31CrossRefGoogle Scholar
  2. Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18:519–527CrossRefGoogle Scholar
  3. Beaver RJ, Mahomed M, Backstein D, Davis A, Zukor DJ, Gross AE (1992) Fresh osteochondral allografts for post-traumatic defects in the knee. A survivorship analysis. J Bone Joint Surg Br 74:105–110CrossRefGoogle Scholar
  4. Beris AE, Lykissas MG, Kostas-Agnantis I, Manoudis GN (2012) Treatment of full-thickness chondral defects of the knee with autologous chondrocyte implantation: a functional evaluation with long-term follow-up. Am J Sports Med 40:562–567CrossRefGoogle Scholar
  5. Berruto M, Delcogliano M, de Caro F et al (2014) Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med 42:1607–1617CrossRefGoogle Scholar
  6. Bodick N, Lufkin J, Willwerth C, Kumar A et al (2015) An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. J Bone Joint Surg Am 97:877–888CrossRefGoogle Scholar
  7. Borrelli J Jr, Torzilli PA, Grigiene R, Helfet DL (1997) Effect of impact load on articular cartilage: development of an intra-articular fracture model. J Orthop Trauma 11:319–326CrossRefGoogle Scholar
  8. van Brakel RW, Eygendaal D (2006) Intra-articular injection of hyaluronic acid is not effective for the treatment of post-traumatic osteoarthritis of the elbow. Arthroscopy 22:1199–1203CrossRefGoogle Scholar
  9. Braun S, Minzlaff P, Hollweck R, Wortler K, Imhoff AB (2008) The 5.5-year results of MegaOATS—autologous transfer of the posterior femoral condyle: a case-series study. Arthritis Res Ther 10:R68CrossRefGoogle Scholar
  10. Bugbee WD, Pallante-Kichura AL, Gortz S, Amiel D, Sah R (2016) Osteochondral allograft transplantation in cartilage repair: Graft storage paradigm, translational models, and clinical applications. J Orthop Res 34:31–38CrossRefGoogle Scholar
  11. Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc 24:2380–2387CrossRefGoogle Scholar
  12. Cole BJ, Pascual-Garrido C, Grumet RC (2009) Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am 91:1778–1790PubMedGoogle Scholar
  13. Davis W, Moskowitz RW (1973) Degenerative joint changes following posterior cruciate ligament section in the rabbit. Clin Orthop Relat Res 93:307–312CrossRefGoogle Scholar
  14. Di Martino A, Kon E, Perdisa F et al (2015) Surgical treatment of early knee osteoarthritis with a cell-free osteochondral scaffold: results at 24 months of follow-up. Injury 46(Suppl 8):S33–S38CrossRefGoogle Scholar
  15. Drexler M, Gross A, Dwyer T et al (2015) Distal femoral varus osteotomy combined with tibial plateau fresh osteochondral allograft for post-traumatic osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 23:1317–1323CrossRefGoogle Scholar
  16. Filardo G, Di Matteo B, Di Martino A et al (2015a) Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med 43:1575–1582CrossRefGoogle Scholar
  17. Filardo G, Kon E, Berruto M, Di Martino A et al (2012) Arthroscopic second generation autologous chondrocytes implantation associated with bone grafting for the treatment of knee osteochondritis dissecans: results at 6 years. Knee 19:658–663CrossRefGoogle Scholar
  18. Filardo G, Kon E, Longo UG et al (2016a) Non-surgical treatments for the management of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24:1775–1785CrossRefGoogle Scholar
  19. Filardo G, Kon E, Perdisa F et al (2013a) Osteochondral scaffold reconstruction for complex knee lesions: a comparative evaluation. Knee 20:570–576CrossRefGoogle Scholar
  20. Filardo G, Kon E, Perdisa F, Balboni F, Marcacci M (2014) Autologous osteochondral transplantation for the treatment of knee lesions: results and limitations at two years’ follow-up. Int Orthop 38:1905–1912CrossRefGoogle Scholar
  21. Filardo G, Kon E, Perdisa F, Tetta C, Di Martino A, Marcacci M (2015b) Arthroscopic mosaicplasty: long-term outcome and joint degeneration progression. Knee 22:36–40CrossRefGoogle Scholar
  22. Filardo G, Kon E, Roffi A, Di Matteo B, Merli ML, Marcacci M (2015c) Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg Sports Traumatol Arthrosc 23:2459–2474CrossRefGoogle Scholar
  23. Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E (2013b) Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc 21:1717–1729CrossRefGoogle Scholar
  24. Filardo G, Perdisa F, Roffi A, Marcacci M, Kon E (2016b) Stem cells in articular cartilage regeneration. J Orthop Surg Res 11:42CrossRefGoogle Scholar
  25. Filardo G, Vannini F, Marcacci M et al (2013c) Matrix-assisted autologous chondrocyte transplantation for cartilage regeneration in osteoarthritic knees: results and failures at midterm follow-up. Am J Sports Med 41:95–100CrossRefGoogle Scholar
  26. Ghazavi MT, Pritzker KP, Davis AM, Gross AE (1997) Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br 79:1008–1013CrossRefGoogle Scholar
  27. Gill TJ, Moezzi DM, Oates KM, Sterett WI (2001) Arthroscopic reduction and internal fixation of tibial plateau fractures in skiing. Clin Orthop Relat Res 383:243–249CrossRefGoogle Scholar
  28. Gobbi A, Karnatzikos G, Sankineani SR (2014) One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med 42:648–657CrossRefGoogle Scholar
  29. Goetz JE, Fredericks D, Petersen E et al (2015) A clinically realistic large animal model of intra-articular fracture that progresses to post-traumatic osteoarthritis. Osteoarthr Cartil 23:1797–1805CrossRefGoogle Scholar
  30. Gomoll AH, Farr J, Gillogly SD, Kercher J, Minas T (2010) Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am 92:2470–2490PubMedGoogle Scholar
  31. Goodwin W, McCabe D, Sauter E et al (2010) Rotenone prevents impact-induced chondrocyte death. J Orthop Res 28:1057–1063PubMedPubMedCentralGoogle Scholar
  32. Gormeli G, Gormeli CA, Ataoglu B, Colak C, Aslanturk O, Ertem K (2017) Multiple PRP injections are more effective than single injections and hyaluronic acid in knees with early osteoarthritis: a randomized, double-blind, placebo-controlled trial. Knee Surg Sports Traumatol Arthrosc 25:958–965CrossRefGoogle Scholar
  33. Green DM, Noble PC, Ahuero JS, Birdsall HH (2006) Cellular events leading to chondrocyte death after cartilage impact injury. Arthritis Rheum 54:1509–1517CrossRefGoogle Scholar
  34. Gudas R, Gudaite A, Pocius A et al (2012) Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med 40:2499–2508CrossRefGoogle Scholar
  35. Guilak F, Fermor B, Keefe FJ et al (2004) The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res 423:17–26CrossRefGoogle Scholar
  36. Hangody L, Dobos J, Balo E, Panics G, Hangody LR, Berkes I (2010) Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med 38:1125–1133CrossRefGoogle Scholar
  37. Heard BJ, Barton KI, Chung M et al (2015) Single intra-articular dexamethasone injection immediately post-surgery in a rabbit model mitigates early inflammatory responses and post-traumatic osteoarthritis-like alterations. J Orthop Res 33:1826–1834CrossRefGoogle Scholar
  38. Hellio Le Graverand-Gastineau MP (2009) OA clinical trials: current targets and trials for OA. Choosing molecular targets: what have we learned and where we are headed? Osteoarthr Cartil 17:1393–1401CrossRefGoogle Scholar
  39. Hollander JL (1951) The local effects of compound F (hydrocortisone) injected into joints. Bull Rheum Dis 2:3–4PubMedGoogle Scholar
  40. Huang TL, Hsu HC, Yang KC, Yao CH, Lin FH (2010) Effect of different molecular weight hyaluronans on osteoarthritis-related protein production in fibroblast-like synoviocytes from patients with tibia plateau fracture. J Trauma 68:146–152CrossRefGoogle Scholar
  41. Huebner KD, Shrive NG, Frank CB (2014) Dexamethasone inhibits inflammation and cartilage damage in a new model of post-traumatic osteoarthritis. J Orthop Res 32:566–572CrossRefGoogle Scholar
  42. Hurtig M, Chubinskaya S, Dickey J, Rueger D (2009) BMP-7 protects against progression of cartilage degeneration after impact injury. J Orthop Res 27:602–611CrossRefGoogle Scholar
  43. Jansen H, Frey SP, Doht S, Fehske K, Meffert RH (2013) Medium-term results after complex intra-articular fractures of the tibial plateau. J Orthop Sci 18:569–577CrossRefGoogle Scholar
  44. Knutsen G, Engebretsen L, Ludvigsen TC et al (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Jt Surg Am 86:455–464CrossRefGoogle Scholar
  45. Kon E, Filardo G, Di Martino A, Marcacci M (2012) ACI and MACI. J Knee Surg 25:17–22CrossRefGoogle Scholar
  46. Kon E, Filardo G, Di Martino A et al (2014a) Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 42:158–165CrossRefGoogle Scholar
  47. Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M (2014b) Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 1:10CrossRefGoogle Scholar
  48. Kon E, Filardo G, Venieri G, Perdisa F, Marcacci M (2014c) Tibial plateau lesions. Surface reconstruction with a biomimetic osteochondral scaffold: results at 2 years of follow-up. Injury 45(Suppl 6):S121–S125CrossRefGoogle Scholar
  49. Llinas A, McKellop HA, Marshall GJ, Sharpe F, Kirchen M, Sarmiento A (1993) Healing and remodeling of articular incongruities in a rabbit fracture model. J Bone Joint Surg Am 75:1508–1523CrossRefGoogle Scholar
  50. Madry H, Kon E, Condello V et al (2016) Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 24:1753–1762CrossRefGoogle Scholar
  51. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64:460–466CrossRefGoogle Scholar
  52. Marcacci M, Kon E, Delcogliano M, Filardo G, Busacca M, Zaffagnini S (2007) Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up. Am J Sports Med 35:2014–2021CrossRefGoogle Scholar
  53. Marcacci M, Zaffagnini S, Kon E et al (2013) Unicompartmental osteoarthritis: an integrated biomechanical and biological approach as alternative to metal resurfacing. Knee Surg Sports Traumatol Arthrosc 21:2509–2517CrossRefGoogle Scholar
  54. Martin JA, Buckwalter JA (2006) Post-traumatic osteoarthritis: the role of stress induced chondrocyte damage. Biorheology 43:517–521PubMedGoogle Scholar
  55. Matta JM (1996) Fractures of the acetabulum: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J Bone Joint Surg Am 78:1632–1645CrossRefGoogle Scholar
  56. McDevitt C, Gilbertson E, Muir H (1977) An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg Br 59:24–35CrossRefGoogle Scholar
  57. Minas T, Von Keudell A, Bryant T, Gomoll AH (2014) The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 472:41–51CrossRefGoogle Scholar
  58. Mitchell N, Shepard N (1980) Healing of articular cartilage in intra-articular fractures in rabbits. J Bone Joint Surg Am 62:628–634CrossRefGoogle Scholar
  59. Niemeyer P, Uhl M, Salzmann GM, Morscheid YP, Sudkamp NP, Madry H (2015) Evaluation and analysis of graft hypertrophy by means of arthroscopy, biochemical MRI and osteochondral biopsies in a patient following autologous chondrocyte implantation for treatment of a full-thickness-cartilage defect of the knee. Arch Orthop Trauma Surg 135:819–830CrossRefGoogle Scholar
  60. Pelletier JP, Martel-Pelletier J (2007) DMOAD developments: present and future. Bull NYU Hosp Jt Dis 65:242–248PubMedGoogle Scholar
  61. Perdisa F, Filardo G, Sessa A et al (2017) One-step treatment for patellar cartilage defects with a cell-free osteochondral scaffold: a prospective clinical and MRI evaluation. Am J Sports Med 45:1581–1588CrossRefGoogle Scholar
  62. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND (1980) The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg Am 62:1232–1251CrossRefGoogle Scholar
  63. Schatzker J (1988) Anterior approach to the knee with osteotomy of the tibial tubercle for bicondylar tibial fractures. J Bone Joint Surg Am 70:1575–1576CrossRefGoogle Scholar
  64. Schatzker J, Lambert DC (1979) Supracondylar fractures of the femur. Clin Orthop Relat Res 138:77–83Google Scholar
  65. Schenker ML, Mauck RL, Ahn J, Mehta S (2014) Pathogenesis and prevention of posttraumatic osteoarthritis after intra-articular fracture. J Am Acad Orthop Surg 22:20–28CrossRefGoogle Scholar
  66. Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W (2014) Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg 22:121–133PubMedGoogle Scholar
  67. Strange-Vognsen HH (1991) Intraarticular fractures of the distal end of the radius in young adults. A 16 (2-26) year follow-up of 42 patients. Acta Orthop Scand 62:527–530CrossRefGoogle Scholar
  68. Tochigi Y, Buckwalter JA, Martin JA et al (2011) Distribution and progression of chondrocyte damage in a whole-organ model of human ankle intra-articular fracture. J Bone Joint Surg Am 93:533–539CrossRefGoogle Scholar
  69. Weiss NG, Parvizi J, Trousdale RT, Bryce RD, Lewallen DG (2003) Total knee arthroplasty in patients with a prior fracture of the tibial plateau. J Bone Joint Surg Am 85:218–221CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • F. Perdisa
    • 1
  • L. Andriolo
    • 1
  • R. De Filippis
    • 1
  • E. Kon
    • 2
    • 3
  • G. Filardo
    • 4
  1. 1.Clinica Ortopedica e Traumatologica 2IRCCS Istituto Ortopedico RizzoliBolognaItaly
  2. 2.Knee Joint Reconstruction Center—3rd Orthopaedic DivisionHumanitas Clinical InstituteMilanItaly
  3. 3.Department of Biomedical SciencesHumanitas UniversityMilanItaly
  4. 4.Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico RizzoliBolognaItaly

Personalised recommendations