Distal Radius Fractures with Metaphyseal Involvement: “Minimally Invasive Volar Plate Osteosynthesis”

  • Miguel A. Capomassi
  • Miguel H. Slullitel


Distal radius fractures are very frequent, and their treatment has been widely discussed in the scientific literature. Yet, these fractures may sometimes present with metaphyseal and even diaphyseal extension, making treatment more complex. This chapter addresses the treatment of these fracture patterns through a minimally invasive approach with long locking compression plates (LCP) that bridge the comminuted area. The minimally invasive technique, which requires a distal and a proximal incision, causes far less damage to the soft tissues and to the vascular supply of the metaphyso-diaphyseal bone fragments, compared with the conventional open surgery. Both anatomical and biomechanical considerations, as well as a precise step-by-step outline and photographs of the surgical technique, are key contents of this chapter. A detailed post-operative patient management protocol is also included.


Distal radius Fracture Volar plate Osteosynthesis 



The authors would like to thank R. Martín Gardenal, E. Andrés Glasberg and Manuel A. Velez for their contribution to the chapter.


  1. Brehmer JL, Husband JB (2014) Accelerated rehabilitation compared with a standard protocol after distal radial fractures treated with volar open reduction and internal fixation: a prospective, randomized, controlled study. J Bone Joint Surg Am 96:1621–1630CrossRefGoogle Scholar
  2. Chen CY, Lin KC, Yang SW, Renn JH, Tarng YW (2015) Clinical results of using minimally invasive long plates osteosynthesis versus conventional approach for extensive comminuted metadiaphyseal fractures of the radius. Arch Orthop Trauma Surg 135:361–367CrossRefGoogle Scholar
  3. Chung KC, Petruska EA (2007) Treatment of unstable distal radial fractures with the volar locking plating system. Surgical technique. J Bone Joint Surg Am 89:256–266CrossRefGoogle Scholar
  4. Chung KC, Spilson SV (2001) The frequency and epidemiology of hand and forearm fractures in the United States. J Hand Surg Am 26:908–915CrossRefGoogle Scholar
  5. Drobetz H, Bryant A, Pokorny T, Spitaler R, Leixnering M, Jupiter JB (2006) Volar fixed-angle plating of distal radius extension fractures: influence of plate position on secondary loss of reduction—a biomechanic study in a cadaveric model. J Hand Surg Am 31:615–622CrossRefGoogle Scholar
  6. Ganz R, Mast J, Weber B, Perren S (1991) Clinical aspects of biological plating. Injury 22:4–5Google Scholar
  7. Gustilo RB, Anderson JT (1976) Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am 58:453–458CrossRefGoogle Scholar
  8. Gutierrez Olivera N, Ruchelli L, Iglesias S, Capomassi M, Allende C (2015) Minimally invasive plate osteosynthesis in distal radius fractures with metaphyseal extension: a series of 13 cases. Chir Main 34:227–233CrossRefGoogle Scholar
  9. Hagert E, Lluch A, Rein S (2016) The role of proprioception and neuromuscular stability in carpal instabilities. J Hand Surg Eur 41:94–101CrossRefGoogle Scholar
  10. Hagert E (2010) Proprioception of the wrist joint: a review of current concepts and possible implications on the rehabilitation of the wrist. J Hand Ther 23:2–16CrossRefGoogle Scholar
  11. Hanel DP, Lu TS, Weil WM (2006) Bridge plating of distal radius fractures: the Harborview method. Clin Orthop Relat Res 445:91–99PubMedGoogle Scholar
  12. Hayes AJ, Duffy PJ, McQueen MM (2008) Bridging and nonbridging external fixation in the treatment of unstable fractures of the distal radius: a retrospective study of 588 patients. Acta Orthop 79:540–547CrossRefGoogle Scholar
  13. Hudak PL, Amadio PC, Bombardie C (1996) Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder and hand). The Upper Extremity Collaborative Group (UECG). Am J Ind Med 29:602–608CrossRefGoogle Scholar
  14. Imatani J, Noda T, Morito Y, Sato T, Hashizume H, Inoue H (2005) Minimally invasive plate osteosynthesis for comminuted fractures of the metaphysis. J Hand Surg Br 30:220–225CrossRefGoogle Scholar
  15. Keast-Butler O, Schemitsch EH (2008) Biology versus mechanics in the treatment of distal radial fractures. J Orthop Trauma 22:S91–S95CrossRefGoogle Scholar
  16. Krettek C, Schandelmaier P, Miclau T, Tscherne H (1997) Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral fractures. Injury 28:20–30CrossRefGoogle Scholar
  17. Lamas C, Llusà M, Méndez A, Proubasta I, Carrera A, Forcada P (2009) Intraosseous vascularity of the distal radius: anatomy and clinical implications in distal radius fractures. Hand (N.Y.) 4:418–423CrossRefGoogle Scholar
  18. Lee SK, Seo DW, Kim KJ, Yang DS, Choy WS (2013) Volar long locking compression plate fixation for distal radius fractures with metaphyseal and diaphyseal extension. Eur J Orthop Surg Traumatol 23:407–415CrossRefGoogle Scholar
  19. Lozano-Calderón SA, Souer S, Mudgal C, Jupiter JB, Ring D (2008) Wrist mobilisation following volar plate fixation of fractures of the distal part of the radius. J Bone Joint Surg Am 90:1297–1304CrossRefGoogle Scholar
  20. Orbay J, Fernandez DL (2004) Volar fixed-angle plate fixation for unstable distal radius fractures in the elderly patient. J Hand Surg Am 29:97–102CrossRefGoogle Scholar
  21. Orbay JL, Touhami A (2006) Current concepts in volar fixed-angle fixation of unstable distal radius fractures. Clin Orthop Relat Res 445:58–67PubMedGoogle Scholar
  22. Rampoldi M, Palombi D, Tagliente D (2011) Distal radius fractures with diaphyseal involvement: fixation with fixed angle volar plate. J Orthop Traumatol 12:137–143CrossRefGoogle Scholar
  23. Rath S, Hung LK, Leung PC (1990) Vascular anatomy of the pronator quadratus muscle-bone flap: a justification for its use with a distally based blood supply. J Hand Surg Am 15:630–636CrossRefGoogle Scholar
  24. Ruch DS, Ginn TA, Yang CC, Smith BP, Rushing J, Hanel DP (2005) Use of a distraction plate for distal radial fractures with metaphyseal and diaphyseal comminution. J Bone Joint Surg Am 87:945–954CrossRefGoogle Scholar
  25. Sen MK, Strauss N, Harvey EJ (2008) Minimally invasive plate osteosynthesis of distal radius fractures using a pronator sparing approach. Tech Hand Up Extrem Surg 12:2–6CrossRefGoogle Scholar
  26. Singer BR, McLauchlan GJ, Robinson CM, Christie J (1998) Epidemiology of fractures in 15,000 adults: the influence of age and gender. J Bone Joint Surg Br 80:243–248CrossRefGoogle Scholar
  27. Wolfe SW, Swigart CR, Grauer J, Slade JF, Panjabi MM (1998) Augmented external fixation of distal radius fractures: a biomechanical analysis. J Hand Surg Am 23:127–134CrossRefGoogle Scholar
  28. Zemirline A, Taleb C, Facca S, Liverneaux P (2014) Minimally invasive surgery of distal radius fractures: a series of 20 cases using a 15-mm anterior approach and arthroscopy. Chir Main 33:263–271CrossRefGoogle Scholar
  29. Zenke Y, Sakai A, Oshige T et al (2011) Clinical results of volar locking plate for distal radius fractures: conventional versus minimally invasive plate osteosynthesis. J Orthop Trauma 25:425–431CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Miguel A. Capomassi
    • 1
  • Miguel H. Slullitel
    • 1
  1. 1.IJS institute of O and TSanta FeArgentina

Personalised recommendations