Skip to main content

Hybrid Feature-Based Sentiment Strength Detection for Big Data Applications

  • Chapter
  • First Online:
Multimodal Analytics for Next-Generation Big Data Technologies and Applications
  • 613 Accesses

Abstract

In this chapter, we focus on the detection of sentiment strength values for a given document. A convolution-based model is proposed to encode semantic and syntactic information as feature vectors, which has the following two characteristics: (1) it incorporates shape and morphological knowledge when generating semantic representations of documents; (2) it divides words according to their part-of-speech (POS) tags and learns POS-level representations for a document by convolving grouped word vectors. Experiments using six human-coded datasets indicate that our model can achieve comparable accuracy with that of previous classification systems and outperform baseline methods over correlation metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://sentistrength.wlv.ac.uk/documentation/

References

  1. Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)

    Article  Google Scholar 

  2. Lim, E.-P., Chen, H., Chen, G.: Business intelligence and analytics: research directions. ACM Trans. Manage. Inf. Syst. 3(4), 17–27 (2013)

    Article  Google Scholar 

  3. Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)

    Article  Google Scholar 

  4. Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl.-Based Syst. 89, 14–46 (2015)

    Article  Google Scholar 

  5. Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., Bandyopadhyay, S.: Enhanced SenticNet with affective labels for concept-based opinion mining. IEEE Intell. Syst. 28(2), 31–38 (2013)

    Article  Google Scholar 

  6. Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)

    Article  Google Scholar 

  7. Katz, G., Ofek, N., Shapira, B.: ConSent: context-based sentiment analysis. Knowl.-Based Syst. 84, 162–178 (2015)

    Article  Google Scholar 

  8. Weichselbraun, A., Gindl, S., Scharl, A.: Enriching semantic knowledge bases for opinion miningin big data applications. Knowl.-Based Syst. 69, 78–85 (2014)

    Article  Google Scholar 

  9. Bravo-Marquez, F., Mendoza, M., Poblete, B.: Meta-level sentiment models for big social data analysis. Knowl.-Based Syst. 69, 86–99 (2014)

    Article  Google Scholar 

  10. Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013)

    Article  Google Scholar 

  11. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 79–96 (2002)

    Google Scholar 

  12. Kim, K., Lee, J.: Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction. Pattern Recognit. 47(2), 758–768 (2014)

    Article  Google Scholar 

  13. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  14. Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cognit. Sci. 34(8), 1388–1429 (2010)

    Article  Google Scholar 

  15. Turney, P.D.: Domain and function: a dual-space model of semantic relations and compositions. J. Artif. Intell. Res. 44(1), 533–585 (2012)

    Article  Google Scholar 

  16. Clarke, D.: A context-theoretic framework for compositionality in distributional semantics. Comput. Linguist. 38(1), 41–71 (2012)

    Article  Google Scholar 

  17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (NIPS), pp. 3111–3119 (2013)

    Google Scholar 

  18. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  19. Majumder, N., Poria, S., Gelbukh, A., Cambria, E.: Deep learning-based document modeling for personality detection from text. IEEE Intell. Syst. 32(2), 74–79 (2017)

    Article  Google Scholar 

  20. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)

    Google Scholar 

  21. Severyn, A., Moschitti, A.: Twitter sentiment analysis with deep convolutional neural networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 959–962 (2015)

    Google Scholar 

  22. Ren, Y., Zhang, Y., Zhang, M., Ji, D.: Context-sensitive twitter sentiment classification using neural network. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pp. 215–221 (2016)

    Google Scholar 

  23. Lei, T., Barzilay, R., Jaakkola, T.: Molding CNNs for text: non-linear, non-consecutive convolutions. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1565–1575 (2015)

    Google Scholar 

  24. Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol. 61(12), 2544–2558 (2010)

    Article  Google Scholar 

  25. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for the social web. J. Am. Soc. Inf. Sci. Technol. 63(1), 163–173 (2012)

    Article  Google Scholar 

  26. dos Santos, C.N., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th International Conference on Computational Linguistics (COLING), pp. 69–78 (2014)

    Google Scholar 

  27. Rosas, V.P., Mihalcea, R., Morency, L.-P.: Multimodal sentiment analysis of Spanish online videos. IEEE Intell. Syst. 28(3), 38–45 (2013)

    Article  Google Scholar 

  28. Zadeh, A., Zellers, R., Pincus, E., Morency, L.P.: Multimodal sentiment intensity analysis in videos: facial gestures and verbal messages. IEEE Intell. Syst. 31(6), 82–88 (2016)

    Article  Google Scholar 

  29. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1114–1125 (2017)

    Google Scholar 

  30. Dragoni, M., Poria, S., Cambria, E.: OntoSenticNet: a commonsense ontology for sentiment analysis. IEEE Intell. Syst. 33, 2 (2018)

    Article  Google Scholar 

  31. Zhang, S., Zhang, S., Huang, T., Gao, W., Tian, Q.: Learning affective features with a hybrid deep model for audio-visual emotion recognition. IEEE Trans. Circuits Syst. Video Technol. (2017). https://doi.org/10.1109/TCSVT.2017.2719043

    Article  Google Scholar 

  32. Ma, Y., Peng, H., Cambria, E.: Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI) (2018)

    Google Scholar 

  33. Cambria, E., Poria, S., Gelbukh, A., Thelwall, M.: Sentiment analysis is a big suitcase. IEEE Intell. Syst. 32(6), 74–80 (2017)

    Article  Google Scholar 

  34. Chen, H., Li, X., Rao, Y., Xie, H., Wang, F.L., Wong, T.-L.: Sentiment strength prediction using auxiliary features. In: Proceedings of the 26th International World Wide Web Conference (WWW), Companion volume, pp. 5–14 (2017)

    Google Scholar 

  35. Strapparava, Mihalcea, R.: Semeval-2007 task 14: Affective text. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval), pp. 70–74 (2007)

    Google Scholar 

  36. Bao, S., Xu, S., Zhang, L., Yan, R., Su, Z., Han, D., Yu, Y.: Mining social emotions from affective text. IEEE Trans. Knowl. Data Eng. 24(9), 1658–1670 (2012)

    Article  Google Scholar 

  37. Rao, Y., Pang, J., Xie, H., Liu, A., Wong, T.-L., Li, Q., Wang, F.L.: Supervised intensive topic models for emotion detection over short text. In: Proceedings of 22nd International Conference on Database Systems for Advanced Applications (DASFAA), pp. 408–422 (2017)

    Chapter  Google Scholar 

  38. Rao, Y.: Contextual sentiment topic model for adaptive social emotion classification. IEEE Intell. Syst. 31(1), 41–47 (2016)

    Article  Google Scholar 

  39. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning (ICML), pp. 160–167 (2008)

    Google Scholar 

  40. Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word embeddings. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1236–1242 (2015)

    Google Scholar 

  41. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, abs/1301.3781 (2013)

    Google Scholar 

  42. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modeling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 655–665 (2014)

    Google Scholar 

  43. Hatzivassiloglou, V., WIebe, J.: Effects of adjective orientation and gradability on sentence subjectivity. In: Proceedings of the 18th International Conference on Computational Linguistics (COLING), pp. 299–305 (2000)

    Google Scholar 

  44. Riloff, E., Wiebe, J., Wilson, T.: Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL (CoNLL), pp. 25–32 (2003)

    Google Scholar 

  45. Murphy, K.P.: Machine Learning: A Probabilistic Perspective, pp. 27–71. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  46. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701 (2012)

    Google Scholar 

  47. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  48. Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. CoRR, abs/1308.6242 (2013)

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to the reviewers, Huijun Chen, and Xin Li for their constructive comments and valuable feedback and suggestions on this chapter. This research was supported by the National Natural Science Foundation of China (61502545), the Internal Research Grant (RG 92/2017-2018R) of The Education University of Hong Kong, and a grant from Research Grants Council of Hong Kong Special Administrative Region, China (UGC/FDS11/E03/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, Y., Xie, H., Wang, F.L., Poon, L.K.M., Zhu, E. (2019). Hybrid Feature-Based Sentiment Strength Detection for Big Data Applications. In: Seng, K., Ang, Lm., Liew, AC., Gao, J. (eds) Multimodal Analytics for Next-Generation Big Data Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-97598-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97598-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97597-9

  • Online ISBN: 978-3-319-97598-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics