Parallel and Distributed Computing for Processing Big Image and Video Data

  • Praveen Kumar
  • Apeksha Bodade
  • Harshada Kumbhare
  • Ruchita Ashtankar
  • Swapnil Arsh
  • Vatsal Gosar


This chapter presents two approaches for addressing the challenges of processing and analysis for Big image or video data. The first approach exploits the intrinsic data-parallel nature of common image processing techniques for processing large images or dataset of images in a distributed manner on a multi-node cluster. The implementation is done using Apache Hadoop’s MapReduce framework and Hadoop Image Processing Interface (HIPI) which facilitates efficient and high-throughput image processing. It also includes a description of a Parallel Image Processing Library (ParIPL) developed by the authors on this framework which is aimed to significantly simplify image processing using Hadoop. The library exploits parallelism at various levels—frame level and intra-frame level. The second approach uses high-end GPUs for efficient parallel implementation of specialized applications with high performance and real-time processing requirements. Parallel implementation of video object detection algorithm, which is the fundamental step in any surveillance-related analysis, is presented on GPU architecture along with fine-grain optimization techniques and algorithm innovation. Experimental results show significant speedups of the algorithms resulting in real-time processing of HD and panoramic resolution videos.


  1. 1.
    Sankaranarayanan, A.C., Veeraraghavan, A., Chellappa, R.: Object detection, tracking and recognition for multiple smart cameras. Proc. IEEE. 96(10), 1606–1624 (2008)CrossRefGoogle Scholar
  2. 2.
    Bibby, C., Reid, I.D.: Robust real-time visual tracking using pixelwise posteriors. In: European Conference on Computer Vision, pages II:831–844 (2008)Google Scholar
  3. 3.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking, In: Proceedings CVPR, pp. 246–252 (1999)Google Scholar
  4. 4.
    Sweeney, C., Liu, L., Arietta, S., Lawrence, J.: HIPI for image processing using MapReduce,, Site: (last accessed on 15th October, 2017)
  5. 5.
    Fiorio, C., Gustedt, J.: Two linear time union-find strategies for image processing. Theor. Comput. Sci. 154(2), 165–181 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Demir, A.S.: Hadoop optimization for massive image processing: case study face detection. (last accessed on 15th October, 2017)
  7. 7.
    Chang, F., Chen, C.-J., Lu, C.-J.: A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Underst. 93(2), 206–220 (2004)CrossRefGoogle Scholar
  8. 8.
    Sugano, H., Miyamoto, R.: Parallel implementation of morphological processing on CELL BE with OpenCV interface. Communications, Control and Signal Processing, 2008. ISCCSP 2008, pp. 578–583 (2008)Google Scholar
  9. 9.
    Squyres, J.M., Lumsdaine, A., Mccandless, B.C., Stevenson, R.L.: Parallel and distributed algorithms for high speed image processing sliding window technique.
  10. 10.
    Park, J.M., Looney, C.G., Chen, H.C.: Fast connected component labeling algorithm using a divide and conquer technique. Computer Science Department University of Alabama and University of Nevada, Reno (2004)Google Scholar
  11. 11.
    Jefferson, K., Lee, C.: Computer vision workload analysis: case study of video surveillance systems. Intel Technol. J. 09(02), (2005)Google Scholar
  12. 12.
    Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component labeling algorithms. In: Proceedings of SPIE Medical Imaging Conference 2005, San Diego, CA (2005). LBNL report LBNL-56864Google Scholar
  13. 13.
    Boyer, M., Tarjan, D., Acton, S.T., Skadron, K.: Accelerating leukocyte tracking using CUDA: a case study in leveraging manycore coprocessors (2009)Google Scholar
  14. 14.
    Manohar, M., Ramapriyan, H.K.: Connected component labeling of binary images on a mesh connected massively parallel processor. Comput. Vis. Graph. Image Process. 45(2), 133–149 (1989)CrossRefGoogle Scholar
  15. 15.
    Sonawane, M.M., Pandure, S.D., Kawthekar, S.S.: A Review on Hadoop MapReduce using image processing and cloud computing. IOSR J Comput Eng (IOSR-JCE) e-ISSN: 2278-0661, p-ISSN: 2278-872. (last accessed on 15th October, 2017)
  16. 16.
  17. 17.
    Kumar, P., Palaniappan, K., Mittal, A., Seetharaman, G.: Parallel blob extraction using multi-core cell processor. Advanced concepts for intelligent vision systems (ACIVS) 2009. LNCS 5807, pp. 320–332 (2009)Google Scholar
  18. 18.
    Kumar, P., Mehta, S., Goyal, A., Mittal, A.: Real-time moving object detection algorithm on high resolution videos using GPUs. J. Real-Time Image Proc. 11(1), 93–109 (2016). CrossRefGoogle Scholar
  19. 19.
    Momcilovic, S., Sousa, L.: A parallel algorithm for advanced video motion estimation on multi-core architectures. In: International Conference Complex, Intelligent and Software Intensive Systems, pp. 831–836 (2008)Google Scholar
  20. 20.
    Banaei, S.M., Moghaddam, H.K.: Apache Hadoop for image processing using distributed systems.
  21. 21.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B., Wallflower: Principles and practice of background maintenance. The proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261, 20–25 September, 1999, Kerkyra, Corfu, GreeceGoogle Scholar
  22. 22.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proc. ICPR, pp. 28–31 vol. 2, 2004Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Praveen Kumar
    • 1
  • Apeksha Bodade
    • 1
  • Harshada Kumbhare
    • 1
  • Ruchita Ashtankar
    • 1
  • Swapnil Arsh
    • 1
  • Vatsal Gosar
    • 1
  1. 1.Visvesvaraya National Institute of Technology (VNIT)NagpurIndia

Personalised recommendations