Advertisement

Cost and Effect of Replication and Quorum in Desktop Grid Computing

  • Alexander Rumyantsev
  • Srinivas Chakravarthy
  • Evsey Morozov
  • Stanislav Remnev
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 912)

Abstract

A Split–Merge multiserver model of a Desktop Grid computing system is studied. Heavy-tailed distributions are used for service times of tasks in a system, including the Pareto distribution, which allows one to obtain some analytical results. The effects of replication and quorum parameters on the key performance measures such as response time and cost of a Desktop Grid system are studied both analytically and through simulation under a variety of scenarios for system configuration and system load. Moment properties of the workload vector, which not only highlight possible heterogeneity but also play a key role in practical applications, are derived.

Keywords

Split–Merge Model Heavy tails Pareto Multiserver Desktop grid Replication Quorum Moment properties 

Notes

Acknowledgements

The study was carried out under state order to the Karelian Research Centre of the Russian Academy of Sciences (Institute of Applied Mathematical Research KRC RAS). This research is partially supported by RF President’s grant MK-1641.2017.1 and RFBR, projects 16-07-00622, 18-07-00147, 18-07-00156, 18-37-00094.

References

  1. 1.
    Balakrishnan, N., Joshi, P.C.: A note on order statistics from Weibull distribution. Scand. Actuar. J. 1981(2), 121–122 (1981).  https://doi.org/10.1080/03461238.1981.10413737MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balakrishnan, N.: Permanents, order statistics, outliers, and robustness. Rev. Mat. Complut. 20(1), 7–107 (2007). http://eudml.org/doc/41927MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boxma, O.J., Cohen, J.W.: The M/G/1 queue with heavy-tailed service time distribution. IEEE J. Sel. Areas Commun. 16(5), 749–763 (1998).  https://doi.org/10.1109/49.700910CrossRefGoogle Scholar
  4. 4.
    Chakravarthy, S.R., Rumyantsev, A.: Efficient redundancy techniques in cloud and desktop grid systems using MAP/G/c-type queues. Open Eng. 8(1), 17 (2018).  https://doi.org/10.1515/eng-2018-0004CrossRefGoogle Scholar
  5. 5.
    Ilya, C., Natalia, N., Evgeny, I.: Task scheduling in desktop grids: open problems. Open Eng. 7(1), 343 (2017).  https://doi.org/10.1515/eng-2017-0038CrossRefGoogle Scholar
  6. 6.
    Feitelson, D.G.: Workload modeling for computer systems performance evaluation. Cambridge University Press, Cambridge (2015).  https://doi.org/10.1017/CBO9781139939690CrossRefzbMATHGoogle Scholar
  7. 7.
    Foss, S.G., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Operations Research and Financial Engineering. Springer, New York (2011).  https://doi.org/10.1007/978-1-4614-7101-1CrossRefzbMATHGoogle Scholar
  8. 8.
    Huang, J.S.: A note on order statistics from Pareto distribution. Scand. Actuar. J. 1975(3), 187–190 (1975).  https://doi.org/10.1080/03461238.1975.10405095MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ivashko, E.: Enterprise desktop grids. In: Proceedings of the Second International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2015), CEUR Workshop Proceedings, vol. 1502, pp. 16–21 (2015)Google Scholar
  10. 10.
    Joshi, G.: Efficient redundancy techniques to reduce delay in Cloud systems. Ph.D. thesis, Massachusetts Institute of Technology (2016). https://dspace.mit.edu/handle/1721.1/105944
  11. 11.
    Kiefer, J., Wolfowitz, J.: On the theory of queues with many servers. Trans. Am. Math. Soc. 78, 1–18 (1955). http://www.jstor.org/stable/1992945MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lieblein, J.: On moments of order statistics from the Weibull distribution. Ann. Math. Stat. 26(2), 330–333 (1955).  https://doi.org/10.1214/aoms/1177728551MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Malik, H.J.: Exact moments of order statistics from the Pareto distribution. Scand. Actuar. J. 1966(3–4), 144–157 (1966).  https://doi.org/10.1080/03461238.1966.10404562MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ramaswami, V., Jain, K., Jana, R., Aggarwal, V.: Modeling heavy tails in traffic sources for network performance evaluation. In: Krishnan, G.S.S., Anitha, R., Lekshmi, R.S., Kumar, M.S., Bonato, A., Graña, M. (eds.) Computational Intelligence, Cyber Security and Computational Models. AISC, vol. 246, pp. 23–44. Springer, New Delhi (2014).  https://doi.org/10.1007/978-81-322-1680-3_4CrossRefGoogle Scholar
  15. 15.
    Rumyantsev, A., Chakravarthy, S.: Split-merge model of workunit replication in distributed computing. In: Proceedings of the Third International Conference BOINC:FAST 2017, CEUR-WS, vol. 1973, pp. 27–34 (2017). http://ceur-ws.org/Vol-1973/paper03.pdf
  16. 16.
    Samorodnitsky, G.: Long range dependence. Found. Trends Stoch. Syst. 1(3), 163–257 (2006).  https://doi.org/10.1561/0900000004MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Scheller-Wolf, A., Vesilo, R.: Structural interpretation and derivation of necessary and sufficient conditions for delay moments in FIFO multiserver queues. Queueing Syst. 54(3), 221–232 (2006).  https://doi.org/10.1007/s11134-006-0068-1MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Scheller-Wolf, A., Vesilo, R.: Sink or swim together: necessary and sufficient conditions for finite moments of workload components in FIFO multiserver queues. Queueing Syst. 67(1), 47–61 (2011).  https://doi.org/10.1007/s11134-010-9198-6MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sigman, K.: Appendix: a primer on heavy-tailed distributions. Queueing Syst. 33(1), 261–275 (1999).  https://doi.org/10.1023/A:1019180230133MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sultan, K.S., Moshref, M.E.: Moments of order statistics from Weibull distribution in the presence of multiple outliers. Commun. Stat. - Theor. Methods 43(10–12), 2214–2226 (2014).  https://doi.org/10.1080/03610926.2013.783072MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Applied Mathematical ResearchKarelian Research Centre of RASPetrozavodskRussia
  2. 2.Petrozavodsk State UniversityPetrozavodskRussia
  3. 3.Departments of Industrial and Manufacturing Engineering and MathematicsKettering UniversityFlintUSA

Personalised recommendations