Advertisement

A Critique of Observers Used in the Context of Feedback Control

  • Graham C. GoodwinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10984)

Abstract

One of the core tenets of feedback control is that a system’s state contains all of the information necessary to predict a system’s future response given future inputs. If the state is not directly measured then it can be estimated using a suitably designed observer. This is a powerful idea with widespread consequences. This paper will present a critique of the use of observers in feedback control. Benefits and drawbacks will be highlighted including fundamental design limitations. The analysis will be illustrated by several real world examples including robots executing a repetitive task, relay autotuning in the presence of broadband disturbances, power line signalling in AC microgrid power systems, Type 1 diabetes management and harmonic suppression in power electronics.

Keywords

Fundamental limitations Harmonic suppression Observers Periodic disturbances Type 1 diabetes management 

Notes

Acknowledgements

The author gratefully acknowledges significant input into the development of this paper from Maria Seron. Input into specific sections has been provided by Diego Carrasco, Adrian Medioli, Richard Middleton, Mario Salgado, Bruce King, Carmel Smart, Tenele Smith, Galina Mirzaeva and Christopher Townsend.

References

  1. 1.
    Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis Inc., Philadelphia (1999). ISBN 0-7484-0116-4Google Scholar
  2. 2.
    Drakunov, S.V.: An adaptive quasioptimal filter with discontinuous parameters. Autom. Remote Control 44(9), 1167–1175 (1983)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Drakunov, S.V.: Sliding-mode observers based on equivalent control method. In: Proceedings of the 31st IEEE Conference on Decision and Control (CDC), pp. 2368–2370 (1992).  https://doi.org/10.1109/CDC.1992.371368, ISBN 0-7803-0872-7
  4. 4.
    Narendra, K.S.: A new approach to adaptive control using multiple models. Int. J. Adap. Control Signal Process. 26(8), 778–799 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bernat, J., Stepien, S.: Multi modelling as new estimation schema for high gain observers. Int. J. Control 88(6), 1209–1222 (2015).  https://doi.org/10.1080/179.2014.1000380MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Krener, A.J., Isidori, A.: Linearization by output injection and nonlinear observers. Syst. Control Lett. 3, 47–52 (1983).  https://doi.org/10.1016/0167-6911(83)90037-3MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hammouri, H., Kinnaert, M.: A new procedure for time-varying linearization up to output injection. Syst. Control Lett. 28(3), 151–157 (1996).  https://doi.org/10.1016/0167-6911(96)00022-9MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ciccarella, G., Dalla Mora, M., Germani, A.: A Luenberger-like observer for nonlinear systems. Int. J. Control 57(3), 537–556 (1993).  https://doi.org/10.1080/00207179308934406MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Friedland, B.: The Control Handbook. CRC Press, IEEE Press (1999). Ch. Observers, pp. 607–618Google Scholar
  10. 10.
    Chen, C.-T.: Linear Systems Theory and Design (Oxford Series in Electrical and Computer Engineering), 3rd edn. Oxford University Press, Oxford (1998)Google Scholar
  11. 11.
    Ellis, G.: Observers in Control Systems: A Practical Guide. Academic Press, Boston (2002)Google Scholar
  12. 12.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)CrossRefGoogle Scholar
  13. 13.
    Joesph, I., Profeta, A., Vogt, W.G., Mickle, M.H.: Disturbance estimation and compensation in linear systems. IEEE Trans. Aerosp. Electron. Syst. 26(2), 225–231 (1990)CrossRefGoogle Scholar
  14. 14.
    Wang, W., Gao, Z.: A comparison study of advanced state observer design techniques. In: American Control Conference (2003)Google Scholar
  15. 15.
    Luenberger, D.: Observers for multivariable systems. IEEE Trans. Autom. Control 11(2), 190–197 (1966)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME J. Basic Eng. 83, 93–107 (1961)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sorenson, H. (ed.): Kalman Filtering Theory and Applications. IEEE Press, New York (1983)Google Scholar
  18. 18.
    Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In: American Control Conference, pp. 1628–1632 (1995)Google Scholar
  19. 19.
    Ahrens, J.H., Khalil, H.K.: Closed-loop behaviour of a class of nonlinear systems under EKF-based control. IEEE Trans. Autom. Control 52(9), 536–540 (2007)CrossRefGoogle Scholar
  20. 20.
    Boutayeb, M., Aubry, D.: A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Trans. Autom. Control 44(8), 1550–1556 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Deza, F., Busvelle, E., Gauthier, J.P., Rakotopara, D.: High gain estimation for nonlinear systems. Syst. Control Lett. 18(4), 295–299 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Farza, M., M’Saad, M., Triki, M., Maatoug, T.: High gain observer for a class of non-triangular systems. Syst. Control Lett. 60(1), 27–35 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Freidovich, L.B., Khaili, H.K.: Lyapunov-based switching control of nonlinear systems using high-gain observers. Automatica 43(1), 150–157 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control (2013).  https://doi.org/10.1002/rnc.3051
  25. 25.
    Krener, A.J.: The convergence of the extended Kalman filter. In: Rantzer, A., Byrnes, C.I. (eds.) Directions in Mathematical Systems Theory and Optimization. LNCIS, vol. 286, pp. 173–182. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36106-5_12CrossRefGoogle Scholar
  26. 26.
    Memon, A.Y., Khalil, H.K.: Full-order high-gain observers for minimum phase nonlinear systems. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly With the 2009 28th Chinese Control Conference, (CDC/CCC 2009), pp. 6538–6543. IEEE (2009)Google Scholar
  27. 27.
    Nazrulla, S., Khalil, H.K.: Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Trans. Autom. Control 56(4), 802–813 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Reif, K., Sonnemann, F., Unbehauen, R.: An EFK-based nonlinear observer with a prescribed degree of stability. Automatica 34(9), 1119–1123 (1998)CrossRefGoogle Scholar
  29. 29.
    Song, Y., Grizzle, J.W.: The extended Kalman filter as a local asymptotic observer for discrete-time nonlinear systems. J. Math. Syst. Estim. Control 5(1), 59–78 (1995)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)CrossRefGoogle Scholar
  31. 31.
    Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)CrossRefGoogle Scholar
  32. 32.
    Rao, C.V., Rawlings, J.B., Mayne, D.Q.: Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans. Autom. Control 48(2), 246–258 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Smith, A.F.M., Gelfand, A.E.: Bayesian statistics without tears: a sampling-resampling perspective. Am. Stat. 46(2), 84–88 (1992)MathSciNetGoogle Scholar
  34. 34.
    Rawlings, J.B., Bakshi, B.R.: Particle filtering and moving horizon estimation. Comput. Chem. Eng. 30, 1529–1541 (2006)CrossRefGoogle Scholar
  35. 35.
    Daum, F.: Nonlinear filters: beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 20(8), 57–69 (2005). Part 2: TutorialsMathSciNetCrossRefGoogle Scholar
  36. 36.
    Ho, Y.C., Lee, R.C.K.: A Bayesian approach to problem in stochastic estimation and control. IEEE Trans. Autom. Control 9(5), 333–339 (1964)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Handschin, J.E., Mayne, D.Q.: Monte Carlo techniques to estimate the conditional expectation in multistage nonlinear filtering. Int. J. Control 9(5), 547–559 (1969)CrossRefGoogle Scholar
  38. 38.
    Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F-Radar Signal Process. 140(2), 107–113 (1993)CrossRefGoogle Scholar
  39. 39.
    Goodwin, G.C., De Dona, J.A., Seron, M.M., Zhuo, X.W.: Lagrangian duality between constrained estimation and control. Automatica 41, 935–944 (2005)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Seron, M.M., Braslavsky, J.H., Goodwin, G.C.: Fundamental Limitations in Filtering and Control. Springer, London (1997).  https://doi.org/10.1007/978-1-4471-0965-5CrossRefzbMATHGoogle Scholar
  41. 41.
    Middleton, R.H., Goodwin, G.C.: Digital Control and Estimation: A Unified Approach. Prentice Hall, Englewood Cliffs (1990)zbMATHGoogle Scholar
  42. 42.
    Luenberger, D.: Observing the state of a linear system. IEEE Trans. Mil. Electron. 8(2), 74–80 (1964)CrossRefGoogle Scholar
  43. 43.
    Stein, G.: Respect the unstable. IEEE Control Syst. 23(4), 12–25 (2003)CrossRefGoogle Scholar
  44. 44.
    Goodwin, G.C., Evans, R.J., Lozano-Leal, R., Feick, R.: Sinusoidal disturbance rejection with application to helicopter flight data estimation. IEEE Trans. Acoust. Speech Signal Process. 34(3), 479–484 (1986)CrossRefGoogle Scholar
  45. 45.
    Edwards, W.J., Thomas, P., Goodwin, G.C.: Roll eccentricity control for strip rolling mills. IFAC World Congr. 20(5), 187–198 (1987)Google Scholar
  46. 46.
    Middleton, R.H., Goodwin, G.C., Longman, R.W.: A method for improving the dynamic accuracy of robot performing a repetitious task. Int. J. Robot. Res. 8(5), 67–74 (1989)CrossRefGoogle Scholar
  47. 47.
    Goodwin, G.C., Seron, M.M., Townsend, C.: A modified relay autotuner for systems having large broadband disturbances. Automatica, March 2018. Accepted for publicationGoogle Scholar
  48. 48.
    Lau, K., Goodwin, G.C., M’Closkey, R.T.: Properties of modulated and demodulated, systems with implications in feedback limitations. Automatica 41, 2123–2129 (2005)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Lau, K., Quevedo, D.E., Vautier, B.J.G., Goodwin, G.C., Moheimani, S.O.R.: Design of modulated and demodulated controllers for flexible structures. Control Eng. Pract. 15(3), 377–388 (2007)CrossRefGoogle Scholar
  50. 50.
    Mirzaeva, G., Goodwin, G.C.: Harmonic suppression and delay compensation for inverters via variable horizon nonlinear model predictive control. Int. J. Control 88(7), 1400–1409 (2015)CrossRefGoogle Scholar
  51. 51.
    Townsend, C.D., Mirzaeva, G., Semenov, D., Goodwin, G.C.: Use of harmonic power line communication to enhance a decentralized control method of parallel inverters in an AC microgrid. In: Proceedings of the 3rd Annual Southern Power Electronics Conference (SPEC), pp. 1–6, December 2017Google Scholar
  52. 52.
    Goodwin, G.C., Middleton, R.H., Poor, V.H.: High speed digital signal processing and control. Proc. IEEE 80(2), 240–259 (1992)CrossRefGoogle Scholar
  53. 53.
    Goodwin, G.C., Agüero, J.C., Cea, M.E., Salgado, M.E., Yuz, J.I.: Sampling and sampled-data models: the interface between the continuous world and digital algorithms. IEEE Control Syst. 33(5), 34–53 (2013)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Middleton, R.H., Goodwin, G.C.: Digital Estimation and Control: A Unified Approach. Prentice Hall, Englewood Cliffs (1990)zbMATHGoogle Scholar
  55. 55.
    Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20(5), 645–651 (1984)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Berner, J., Hägglund, T., Åström, K.J.: Asymmetric relay autotuning - practical features for industrial use. Control Eng. Pract. 54, 231–245 (2016)CrossRefGoogle Scholar
  57. 57.
    Atkinson, M.A., Eisenbarth, G.S., Michels, A.W.: Type 1 diabetes. Lancet 383(9911), 69–82 (2014)CrossRefGoogle Scholar
  58. 58.
    Chee, F., Fernando, T.: Closed-Loop Control of Blood Glucose, vol. 368. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74031-5CrossRefzbMATHGoogle Scholar
  59. 59.
    Aronoff, S.L., Berkowitz, K., Shreiner, B., Want, L.: Glucose Metabolism and Regulation: beyond Insulin and glucagon. Diabetes Spectr. 17, 183–190 (2004)CrossRefGoogle Scholar
  60. 60.
    Doyle III, F.J., Huyett, L.M., Lee, J.B., Zisser, H.C., Dassau, E.: Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37(5), 1191–1197 (2014)CrossRefGoogle Scholar
  61. 61.
    Kovatchev, B., Cobelli, C., Renard, E., Anderson, S., Breton, M., Patek, S., Clarke, W., Bruttomesso, D., Maran, A., Costa, S., et al.: Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. J. Diabetes Sci. Technol. 4(6), 1374–1381 (2010)CrossRefGoogle Scholar
  62. 62.
    Gondhaledar, R., Dassau, E., Doyle III, F.J.: Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica 71, 237–246 (2016)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Kumareswaran, K.: Closed-loop insulin delivery in adults with type 1 diabetes. Ph.D. thesis, University of Cambridge (2012)Google Scholar
  64. 64.
    Bequette, B.: A critical assessment of algorithms and challenges in the development of the closed-loop artificial pancreas. Diabetes Technol. Ther. 7(1), 28–47 (2005)CrossRefGoogle Scholar
  65. 65.
    Klonoff, D.C., Cobelli, C., Kovatchev, B., Zisser, H.C.: Progress in development of an artificial pancreas. J. Diabetes Sci. Technol. 3, 1002–1004 (2009)CrossRefGoogle Scholar
  66. 66.
    Harvey, R.A., Wang, Y., Grosman, B., Percival, M.W., Bevier, W., Finan, D.A., Zisser, H., Seborg, D.S., Jovanovic, L., Doyle III, F.J., Dassau, E.: Quest for the artificial pancreas: combining technology with treatment. IEEE Eng. Med. Biol. Mag. 29(2), 53–62 (2010)CrossRefGoogle Scholar
  67. 67.
    Bequette, B.W.: Challenges and recent progress in the development of a closed-loop artificial pancreas. Annu. Rev. Control 36(2), 255–266 (2012)CrossRefGoogle Scholar
  68. 68.
    Cefalu, W.T., Tamborlane, M.V.: The artificial pancreas: are we there yet? Diabetes Care 37(5), 1182–1183 (2014)CrossRefGoogle Scholar
  69. 69.
    Kovatchev, B., Tamborlane, W.V., Cefalu, W.T., Cobelli, C.: The artificial pancreas in 2016: a digital treatment ecosystem for diabetes. Diabetes Care 39(7), 1123–1126 (2016)CrossRefGoogle Scholar
  70. 70.
    Weinzimer, S.A., Steil, G.M., Swan, K.L., Dziura, J., Kurtz, N., Tamborlane, W.V.: Fully automated closed-loop insulin delivery versus semiautomated hybrid control in paediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5), 934–939 (2008)CrossRefGoogle Scholar
  71. 71.
    Bergman, R.N.: Minimal model: perspective from 2005. Horm. Res. 64(3), 8–15 (2005)Google Scholar
  72. 72.
    Kanderian, S.S., Weinzimer, S., Voskanyan, G., Steil, G.M.: Identification of intraday metabolic profiles during closed-loop glucose control in individuals with type 1 diabetes. J. Diabetes Sci. Technol. 3, 1047–1057 (2009)CrossRefGoogle Scholar
  73. 73.
    Oviedo, S., Vehi, J., Calm, R., Armengol, J.: A review of personalized blood glucose prediction strategies for T1DM patients. Int. J. Numer. Methods Biomed. Eng. 33(6) (2017)Google Scholar
  74. 74.
    Bondia, J., Dassau, E., Zisser, H., Calm, R., Vehi, J., Jovanovic, L., Doyle III, F.J.: Coordinated basal bolus infusion for tighter postprandial glucose control in insulin pump therapy. J. Diabetes Sci. Technol. 3(1), 89–97 (2009)CrossRefGoogle Scholar
  75. 75.
    Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, Upper Saddle River (2001)Google Scholar
  76. 76.
    Cameron, F.M., et al.: Closed-loop control without meal announcement in Type 1 diabetes. Diabetes Technol. Ther. 19(9), 527–532 (2017)Google Scholar
  77. 77.
    Hovorka, R.: The future of continuous glucose monitoring closed loop. Curr. Diabetes Rev. 4(3), 269–279 (2008)CrossRefGoogle Scholar
  78. 78.
    Ramkissoon, C.M., et al.: Unannounced meals in the artificial pancreas: detection using continuous glucose monitoring. Sensors 18, 884 (2008)CrossRefGoogle Scholar
  79. 79.
    Messer, L.H., et al.: Optimizing hybrid closed-loop theory in adolescents and emerging adults using the MiniMed 670G system. Diabetes Care 41(4), 789–796 (2018)CrossRefGoogle Scholar
  80. 80.
    Doyle, J.C., Stein, G.: Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control 26(1), 4–16 (1981)CrossRefGoogle Scholar
  81. 81.
    Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)CrossRefGoogle Scholar
  82. 82.
    Limebeer, D.J., Green, M., Walker, D.: Discrete time \(H_{\infty }\) control. In: 28th CDC, pp. 392–396 (1989)Google Scholar
  83. 83.
    Stoorvogel, A.A., Saberi, A., Chen, B.M.: The discrete time \(H_{\infty }\) control with measurement feedback. Int. J. Robust Nonlinear Control 4, 457–479 (1994)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Zames, G.: Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms and approximate inverses. IEEE Trans. Autom. Control 26, 301–320 (1981)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Dover, New York (2005)zbMATHGoogle Scholar
  86. 86.
    Simon, D.: Optimal State Estimation Kalman, \(H_{\infty }\) and Nonlinear Approaches. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  87. 87.
    Jazwinski, A.H.: Stochastic Processes and Filtering. Dover, New York (2007)zbMATHGoogle Scholar
  88. 88.
    Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Dover, New York (2009)zbMATHGoogle Scholar
  89. 89.
    Söderström, T.: Errors-in-Variables Methods in System Identification. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-75001-9CrossRefzbMATHGoogle Scholar
  90. 90.
    Agüero, J.C., Goodwin, G.C.: Identifiability of errors-in-variables dynamic systems. Automatica 44, 371–382 (2008)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Stengel, R.F.: Optimal Control and Estimation. Dover, New York (1994)zbMATHGoogle Scholar
  92. 92.
    Radke, A., Gao, Z.: A survey of state and disturbance observers for practitioners. In: Annual Control Conference, pp. 5183–5188 (2006)Google Scholar
  93. 93.
    Carrasco, D.S., Goodwin, G.C.: Connecting filtering and control sensitivity functions. Automatica 50(12), 3319–3322 (2014)MathSciNetCrossRefGoogle Scholar
  94. 94.
    Goodwin, G.C., Seron, M.M.: A gold standard for optimal insulin infusion for Type 1 diabetes ingesting a meal with slow postprandial response (2018). Submitted for publicationGoogle Scholar
  95. 95.
    Goodwin, G.C., Medioli, A.M., Carrasco, D.S., King, B.R., Fu, Y.: A fundamental control limitation for linear positive systems with application to Type 1 diabetes treatment. Automatica 55, 73–77 (2015)MathSciNetCrossRefGoogle Scholar
  96. 96.
    Goodwin, G.C., Carrasco, D.S., Seron, M.M., Medioli, A.M.: A performance limit for a class of positive nonlinear systems. Automatica 95, 14–22 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of NewcastleCallaghanAustralia

Personalised recommendations