Advertisement

Languages of Baltic Countries in Digital Age

  • Inguna Skadiņa
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 838)

Abstract

Today, when we are surrounded by intelligent digital devices – computers, tablets and mobile phones, we expect communication with these devices in a natural language. Moreover, such communication needs to be in our native language. We also expect that language technologies will not only assist us in everyday tasks, but also will help to overcome problems caused by language barriers. This keynote will focus on language resources and tools that facilitate use of languages of three Baltic countries – Estonian, Latvian and Lithuanian -in digital means (computers, tablets, mobile phones), allow to minimize language barriers, facilitate social inclusion, and support more natural human-computer interaction, thus making digital services more “human”. Current situation, technological challenges and most important achievements in language technologies that help to narrow technological gap, facilitates use of natural language for interaction between computer and human, and minimize threat of digital extinction will be presented.

Keywords

Language resources Natural language processing Languages of Baltic countries Under-resourced languages Corpora Speech processing 

Notes

Acknowledgements

The research was developed under the University of Latvia contract no. AAP2016/B032 “Innovative information technologies”.

References

  1. 1.
    Liin, K., Muischnek, K., Müürisep, K., Vider, K.: Eesti keel digiajastul – the Estonian Language in the Digital Age. Springer, New York (2012)Google Scholar
  2. 2.
    Skadiņa, I., Veisbergs, A., Vasiļjevs, A., Gornostaja, T., Keiša, I., Rudzīte, A.: Latviešu valoda digitālajā laikmetā – The Latvian Language in the Digital Age. Springer, New York (2012)Google Scholar
  3. 3.
    Vaišnienė, D., Zabarskaitė, J. Lietuvių kalba skaitmeniniame amžiuje – The Lithuanian Language in the Digital Age. Springer, New York (2012)Google Scholar
  4. 4.
    De Jong, F., Maegaard, B., De Smedt K., Fišer, D. and Van Uytvanck, D.: CLARIN: towards FAIR and responsible data science using language resources. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation – LREC 2018, pp. 3259–3264. European Language Resources Association (ELRA), Miyazaki, Japan (2018)Google Scholar
  5. 5.
    Utka, A., Amilevičius, D., Krilavičius, T., Vitkutė-Adžgauskienė, D. Overview of the development of language resources and technologies in Lithuania (2012–2015). In: Human Language Technologies – The Baltic Perspective, pp. 12–19. IOS Press (2016)Google Scholar
  6. 6.
    Gruzitis, N., Pretkalnina, L., Saulite, B., Rituma, L., Nespore-Berzkalne, G., Znotins, A., Paikens, P.: Creation of a balanced state-of-the-art multilayer corpus for NLU. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation - LREC 2018, pp. 4506–3264. European Language Resources Association (ELRA), Miyazaki, Japan (2018)Google Scholar
  7. 7.
    Levane-Petrova, K.: Līdzsvarots mūsdienu latviešu valodas tekstu korpuss un tā tekstu atlases kritēriji (The balanced corpus of modern Latvian and the text selection criteria). Baltistica 8, 89–98 (2012)Google Scholar
  8. 8.
    Rimkutė, E., Kovalevskaitė, J., Melninkaitė, V., Utka, A., Vitkutė-Adžgauskienė, D.: Corpus of contemporary Lithuanian language – the standardised way. In: Human Language Technologies – The Baltic Perspective: Proceedings of the Fourth International Conference Baltic HLT, pp. 154–160. IOS Press (2010)Google Scholar
  9. 9.
    Kaalep, H.J., Muischnek, K., Uiboaed, K., Veskis, K.: The Estonian reference corpus: its composition and morphology-aware user interface. In: Human Language Technologies – The Baltic Perspective: Proceedings of the Fourth International Conference Baltic HLT, pp. 143–146. IOS Press (2010)Google Scholar
  10. 10.
    Utka, A., Levane-Petrova, K., Bielinskiene, A., Kovalevskaite, J., Rimkute, E., Vevere, D.: Lithuanian-Latvian-Lithuanian parallel corpus. In: Human Language Technologies – The Baltic Perspective, pp. 260–264. IOS Press (2012)Google Scholar
  11. 11.
    Muischnek, K., Müürisep, K., Puolakainen, T.: Dependency parsing of Estonian: statistical and rule-based approaches. In: Human Language Technologies – The Baltic Perspective, pp. 111–118. IOS Press (2014)Google Scholar
  12. 12.
    Pretkalnina, L., Rituma, L., Saulite, B.: Universal dependency treebank for Latvian: a pilot. In: Human Language Technologies – The Baltic Perspective, pp. 136–143. IOS Press (2016)Google Scholar
  13. 13.
    Bielinskienė, A., Boizou, L., Kovalevskaitė, J., Rimkutė, E.: Lithuanian dependency treebank ALKSNIS. In: Human Language Technologies – The Baltic Perspective, pp. 107–114. IOS Press (2016)Google Scholar
  14. 14.
    Spektors, A., Auzina, I., Dargis, R., Gruzitis, N., Paikens, P., Pretkalnina, L., Rituma, L., Saulite, B.: Tezaurs.lv: the largest open lexical database for Latvian. In: Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC), pp. 2568–2571 (2016)Google Scholar
  15. 15.
    Pinnis, M., Krišlauks, R., Miks, T., Deksne, D., Šics, V.: Tilde’s machine translation systems for WMT 2017. In: Proceedings of the Second Conference on Machine Translation, Shared Task Papers, vol. 2, pp. 374–381 (2017)Google Scholar
  16. 16.
    Pinnis, M., Kalniņš, R.: Developing a neural machine translation service for the 2017–2018 European Union Presidency. In: Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (AMTA 2018), MT Users, Boston, vol. 2, pp. 72–83 (2018)Google Scholar
  17. 17.
    Kurimo, K., Enarvi, S., Tilk, O., Varjokallio, M., Mansikkaniemi, A., Alumäe, T. Modeling under-resourced languages for speech recognition. In: Language Resources and Evaluation, pp. 961–987. Springer, Netherlands (2017)Google Scholar
  18. 18.
    Alumäe, T.: Full-duplex speech-to-text system for Estonian. In: Human Language Technologies – The Baltic Perspective, Baltic HLT 2014, Kaunas, Lithuania. IOS Press (2014)Google Scholar
  19. 19.
    Paats, A., Alumäe, T., Meister, E., Fridolin, I. Evaluation of automatic speech recognition prototype for Estonian language in radiology domain: a pilot study. In: Mindedal, H., Persson, M. (eds.) 16th Nordic-Baltic Conference on Biomedical Engineering. IFMBE Proceedings, vol. 48, pp. 96–99. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-12967-9_26
  20. 20.
    Pinnis, M., Auziņa, I., Goba, K.: Designing the Latvian speech recognition corpus. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), pp. 1547–1553 (2014)Google Scholar
  21. 21.
    Salimbajevs, A.: Towards the first dictation system for Latvian Language. In: Frontiers in Artificial Intelligence and Applications, Human Language Technologies – The Baltic Perspective, vol. 289, pp. 66–73 (2016)Google Scholar
  22. 22.
    Znotins, A., Polis, K., Dargis, R.: Media monitoring system for Latvian radio and TV broadcasts. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 732–733 (2015)Google Scholar
  23. 23.
    Salimbajevs, A.: Creating Lithuanian and Latvian speech corpora from inaccurately annotated web data. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), pp. 2871–2875 (2018)Google Scholar
  24. 24.
    Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse (2013)Google Scholar
  25. 25.
    Barzdins, G., Gosko, D.: RIGA at SemEval-2016 Task 8: Impact of smatch extensions and character-level neural translation on AMR parsing accuracy. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval) (2016)Google Scholar
  26. 26.
    Gruzitis, N., Gosko, D., Barzdins, G.: RIGOTRIO at SemEval-2017 Task 9: combining machine learning and grammar engineering for AMR parsing and generation. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval), pp. 924–928 (2017)Google Scholar
  27. 27.
    Koit, M.: Modelling human-computer interaction. In: SCAI, p. 276 (1997)Google Scholar
  28. 28.
    Koit, M.: Modelling attitudes of dialogue participants - reasoning and communicative space. In: Proceedings of the 10th International Conference on Agents and Artificial Intelligence, pp. 581–588 (2018)Google Scholar
  29. 29.
    Vasiljevs, A., Skadina, I., Deksne, D., Kalis, M., Vira, I.: Application of virtual agents for delivery of information services. In: New Challenges of Economic and Business Development – 2017, pp. 667–678 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of Latvia (UL)RigaLatvia
  2. 2.Institute of Mathematics and Computer Science ULRigaLatvia
  3. 3.TildeRigaLatvia

Personalised recommendations