Advertisement

Total Anthocyanin Content and Antioxidant Activity of Brown Rice, Endosperm, and Rice Bran of Three Indonesian Black Rice (Oryza sativa L.) Cultivars

  • Warisatul Ilmi
  • Rarastoeti Pratiwi
  • Yekti Asih Purwestri
Conference paper

Abstract

Black rice is one of local rice varieties that have high secondary metabolite content with black and purple pigment. Its color indicated anthocyanin present as secondary metabolites that have some beneficial health on oxidative damage. Therefore, black rice potentially to be developed as functional foods. There are many kinds of black rice cultivars in Indonesia and this study is focused on 3 cultivars: Cempo Ireng from Sayegan, Toraja from Sulawesi, and Wajo Laka from Lampung. Generally, the grain is removed the husk by the process of grinding will be obtained brown rice, then second mockery of brown rice produced rice bran and endosperm. This study aims to determine total anthocyanin content (TAC) and antioxidant activity of brown rice, endosperm, and rice bran (Oryza sativa L.) of Cempo Ireng, Toraja and Wajo Laka cultivars. Measurement of TAC was conducted by pH differential method and antioxidant activity was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) method with ascorbic acid as a possitive control. The TAC result was analyzed by SPSS 16.0 with two-way ANOVA with Duncan test and antioxidant activity was analyzed by MINITAB 14. The results showed that the highest of TAC and antioxidant activity of three black rice cultivars were consequently contained in brown rice, endosperm, and rice bran. For the conclusion, total anthocyanin content and antioxidant activity vary between black rice of Cempo Ireng, Toraja, and Wajo Laka cultivars. TAC was positively correlated with the antioxidant activity for three local cultivars of Indonesian black rice.

Keywords

Antioxidant activity Black rice Functional food Three cultivars Total anthocyanin content 

Abbreviations

BPS

Badan Pusat Statistik

C3G

Cyanidin-3-Glucoside

FALITMA

Fasilitas Penelitian Bersama

P3G

Peonidin-3-Glucoside

RNS

Reactive Nitrogen Species

ROS

Reactive Oxygen Species

TAC

Total anthocyanin content

Notes

Acknowledgements

This study was financially supported by BOPTN (Bantuan Operasional Perguruan Tinggi Negeri) Faculty of Biology, Universitas Gadjah Mada, Indonesia. We thank Rita Handayani and Dhaniar Pratiwi as part of Black Rice Research Team for the kind cooperation and Alifa Mubarok for her technical assistance.

References

  1. 1.
    Sidiq FH. Data Pangan Kementan Berasan dari BPS. [Food data of Kementan Berasan from BPS]. 2017. http://rilis.id/data-pangan-kementan-berasal-dari-bps.html. Accessed 21 Mar 2018. [in Bahasa Indonesia].
  2. 2.
    Suardi D, Ridwan I. Beras hitam, pangan berkhasiat yang belum populer. [Black rice, nutritious food that has not been popular]. Warta Penelitian dan Pengembangan Pertanian. 2009;31(2):9–10. [in Bahasa Indonesia].Google Scholar
  3. 3.
    Chaudhary RC. Speciality rices of the world: effect of WTO and IPR on its production trend and marketing. J Food Agric Environ. 2003;1(2):34–41.Google Scholar
  4. 4.
    Choia Y, Jeonga H, Lee J. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem. 2007;103:130–8.CrossRefGoogle Scholar
  5. 5.
    Prior RL, Wu X. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res. 2006;40(10):1014–28.CrossRefPubMedGoogle Scholar
  6. 6.
    Welch CR, Li QL, Simon JE. Recent advances in anthocyanin analysis and characterization. Curr Anal Chem. 2008;4(2):75–101.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang MW, Zhang RF, Zhang FX, Liu RH. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J Agric Food Chem. 2010;58:7580–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Sangkitikomol W, Tencomnao T, Rocejanasaroj A. Antioxidant effects of anthocyanins-rich extract from black sticky rice on human erythrocytes and mononuclear leucocytes. Afr J Biotechnol. 2010;9(48):8222–9.CrossRefGoogle Scholar
  9. 9.
    Yawadio R, Tanimori S, Morita N. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 2007;101(4):1616–25.CrossRefGoogle Scholar
  10. 10.
    Haryadi. Teknologi Pengolahan Beras. [Rice processing technology]. Yogyakarta: Gadjah Mada University Press; 2008. [in Bahasa Indonesia].Google Scholar
  11. 11.
    Maulida R, Guntarti A. Pengaruh Ukuran Partikel Beras Hitam (Oryza Sativa L.) Terhadap Rendemen Ekstrak Dan Kandungan Total Antosianin. [Influence of black rice particle size (Oryza Sativa L.) against rendement extract and total content of antosianin]. J Pharm. 2015;5(1):9–16. [in Bahasa Indonesia].Google Scholar
  12. 12.
    Widarta IWR, Nodanitri KA, Sari LPIP. Ekstraksi Komponen Bioaktif Bekatul Beras Lokal dengan Beberapa Jenis Pelarut. [Extraction of bioactive components of local rice bran with several type of solvent]. Jurnal Aplikasi Teknologi Pangan. 2013;2(2):75–79. [in Bahasa Indonesia].Google Scholar
  13. 13.
    Shao Y, Xu F, Sun X, Bao J, Beta T. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza Sativa L.). J Cereal Sci. 2014;59:211–8.CrossRefGoogle Scholar
  14. 14.
    Garcia CA, Gavino G, Mosqueda KB, Hevia P, Gavino VC. Correlation of tocopherol, tokotrienol, γ-oryzanol and total polyphenol content in rice bran with different antioxidant capacity assays. J Food Hematol. 2007;102:1228–32.Google Scholar
  15. 15.
    Nofiani R. Artikel ulas balik: Urgensi dan mekanisme biosintesis metabolit sekunder mikroba laut. [Article review: urgency and mechanism of biosynthesis of marine microbial secondary metabolites]. Jurnal Natur Indonesia. 2008:10(2):120–125. [in Bahasa Indonesia].Google Scholar
  16. 16.
    Einhellig FA. Interactions involving allelopathy in cropping systems. Agronomy. 1996;88:886–93.CrossRefGoogle Scholar
  17. 17.
    Bilger W, Rolland M, Nybakken L. UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci. 2007;6:190–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Mpofu A, Sapirstein HD, Beta T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J Agric Food Chem. 2006;54(4):1265–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Giusti MM, Wrolstad ER. Characteristic and measurement of anthocyanins by UV-visible spectroscopy, current protocols in food analytical chemistry. John Wiley & Sons, Inc: New York; 2001.Google Scholar
  20. 20.
    Zakaria Z, Aziz R, Lachimanan YL, Sreenivasan S, Rathinam X. Antioxidant activity of Coleus blumei, Orthosiphon stamnieus, Ocimum basilicum and Mentha arvensis from Lamiaceae family. J Nat Eng Sci. 2008;2:93–5.Google Scholar
  21. 21.
    Sompong R, Siebenhandl-Ehn S, Linsberger-Martin G, Berghofer E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. J Food Chem. 2011;124:132–40.CrossRefGoogle Scholar
  22. 22.
    Itani T, Ogawa M. History and recent trends of red rice in Japan. Jpn J Crop Sci. 2004;73(2):137–47.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Warisatul Ilmi
    • 1
  • Rarastoeti Pratiwi
    • 1
  • Yekti Asih Purwestri
    • 2
  1. 1.Faculty of BiologyUniversitas Gadjah MadaYogyakartaIndonesia
  2. 2.Research Center for BiotechnologyUniversitas Gadjah MadaYogyakartaIndonesia

Personalised recommendations