Advertisement

Compatibility, Coherence and the RIP

  • Enrique Miranda
  • Marco Zaffalon
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 832)

Abstract

We generalise the classical result on the compatibility of marginal, possible non-disjoint, assessments in terms of the running intersection property to the imprecise case, where our beliefs are modelled in terms of sets of desirable gambles. We consider the case where we have unconditional and conditional assessments, and show that the problem can be simplified via a tree decomposition.

Notes

Acknowledgements

We acknowledge the financial support by project TIN2014-59543-P.

References

  1. 1.
    Kellerer, H.: Verteilungsfunktionen mit gegebenen marginalverteilungen. Z. Wahrscheinlichkeitstheorie 3, 247–270 (1964)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Skala, H.J.: The existence of probability measures with given marginals. Ann. Probab. 21(1), 136–142 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fritz, T., Chaves, R.: Entropic inequalities and marginal problems. IEEE Trans. Inf. Theory 59(3), 803–817 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beeri, C., Fagin, R., Maier, D., Yannakis, M.: On the desirability of acyclic database schemes. J. ACM 30, 479–513 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deming, W., Stephan, F.: On a least square adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11, 427–444 (1940)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3(1), 146–158 (1975)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Augustin, T., Coolen, F., de Cooman, G., Troffaes, M. (eds.): Introduction to Imprecise Probabilities. Wiley, Hoboken (2014)zbMATHGoogle Scholar
  8. 8.
    Studeny, M.: Marginal problem in different calculi of AI. In: Advances in Intelligent Computing - IPMU 1994, pp. 348–359. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  9. 9.
    Vejnarová, J.: A note on the interval-valued marginal problem and its maximum entropy solution. Kybernetika 34(1), 19–26 (1998)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jirousek, R.: Solution of the marginal problem and decomposable distributions. Kybernetika 27(5), 403–412 (1991)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)CrossRefGoogle Scholar
  12. 12.
    Miranda, E., Zaffalon, M.: Coherence graphs. Artif. Intell. 173(1), 104–144 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Miranda, E., Zaffalon, M.: Notes on desirability and conditional lower previsions. Ann. Math. Artif. Intell. 60(3–4), 251–309 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Miranda, E., Zaffalon, M.: Conglomerable natural extension. Int. J. Approx. Reason. 53(8), 1200–1227 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jensen, F., Nielsen, T.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Statistics and O.R.University of OviedoOviedoSpain
  2. 2.IDSIALuganoSwitzerland

Personalised recommendations