Advertisement

One-Dimensional Nonlinear Force-Free Current Sheets

  • Oliver Allanson
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter we present new exact collisionless equilibria for a 1D nonlinear force-free magnetic field, namely the force-free Harris sheet. In contrast to previous solutions (Harrison and Neukirch 2009a; Wilson and Neukirch 2011; Abraham-Shrauner 2013; Kolotkov et al. 2015), the solutions that we present allow the plasma beta (\(\beta _{pl}\)) to take any value, and crucially values below unity for the first time. In the derivations of the equilibrium DFs it is found that the most typical approach of Fourier Transforms can not be applied, and so we use expansions in Hermite polynomials, making use of the techniques developed in Chap.  2. Using the convergence criteria developed therein, we verify that the Hermite expansion representation of the DFs are convergent for all parameter values. As shown in Chap.  2, this also implies boundedness, and the existence of velocity moments of all orders. Despite the proven analytic convergence, initial difficulties in attaining numerical convergence mean that plots of the DF can be presented for the plasma beta only modestly below unity. In the effort to model equilibria with much lower values of the plasma, we use a new gauge for the vector potential, and calculate the DF consistent with this gauge, confirming the properties of convergence velocity moments. This new gauge makes attaining numerical convergence possible for lower values of the plasma beta, and we present results for \(\beta _{pl}=0.05.\)

References

  1. B. Abraham-Shrauner, Force-free Jacobian equilibria for Vlasov-Maxwell plasmas. Phys. Plasmas 20(10), 102117 (2013)Google Scholar
  2. O. Allanson, T. Neukirch, S. Troscheit, F. Wilson, From onedimensional fields to Vlasov equilibria: theory and application of Hermite polynomials. J. Plasma Phys. 82.3, 905820306, p. 905820306 (2016)Google Scholar
  3. O. Allanson, T. Neukirch, F.Wilson, S. Troscheit, An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta. Phys. Plasmas 22.10, 102116, p. 102116 (2015)Google Scholar
  4. G. Allen Gary, Plasma beta above a solar active region: rethinking the paradigm. Solar Phys. 203(1), 71–86 (2001)ADSCrossRefGoogle Scholar
  5. A.V. Artemyev, A model of one-dimensional current sheet with parallel currents and normal component of magnetic field. Phys. Plasmas 18(2), 022104 (2011)ADSCrossRefGoogle Scholar
  6. A.V. Artemyev, I.Y. Vasko, S. Kasahara, Thin current sheets in the Jovian magnetotail. Planet. Space Sci. 96, 133–145 (2014)ADSCrossRefGoogle Scholar
  7. N. Attico, F. Pegoraro, Periodic equilibria of the Vlasov-Maxwell system. Phys. Plasmas 6, 767–770 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. E.T. Bell, Exponential polynomials. Ann. of Math. (2) 35.2, pp. 258–277 (1934)Google Scholar
  9. J. Birn, M. Hesse, Energy release and transfer in guide field reconnection. Phys. Plasmas 17.1, 012109, p. 012109 (2010)Google Scholar
  10. N.A. Bobrova, S.I. Syrovatskii, Violent instability of one-dimensional forceless magnetic field in a rarefied plasma. Soviet J. Exp. Theor. Phys. Lett. 30, pp. 535-+ (1979)Google Scholar
  11. N.A. Bobrova, S.V. Bulanov, J.I. Sakai, D. Sugiyama, Force-free equilibria and reconnection of the magnetic field lines in collisionless plasma configurations. Phys. Plasmas 8, 759–768 (2001)ADSCrossRefGoogle Scholar
  12. K. Bowers, H. Li., spectral energy transfer and dissipation of magnetic energy from fluid to kinetic scales. Phys. Rev. Lett. 98.3, pp. 035002-+ (2007)Google Scholar
  13. P.J. Channell, Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19, 1541–1545 (1976)ADSCrossRefGoogle Scholar
  14. L. Comtet. Advanced combinatorics: the Art of Finite and Infinite Expansions. In: D. Reidel (ed.) Enlarged Edition, pp. xi+343 (1974)Google Scholar
  15. D.F. Connon, Various applications of the (exponential) complete Bell polynomials. ArXiv e-prints (2010)Google Scholar
  16. D. Correa-Restrepo, D. Pfirsch, Negative-energy waves in an inhomogeneous force-free Vlasov plasma with sheared magnetic field. Phys. Rev. E 47, 545–563 (1993)ADSCrossRefGoogle Scholar
  17. R. Fitzpatrick, Interaction of scrape-off layer currents with magnetohydrodynamical instabilities in tokamak plasmas. Phys. Plasmas 14.6, 062505, p. 062505 (2007)Google Scholar
  18. I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products. Seventh. (Elsevier/Academic Press, Amsterdam, 2007), pp. xlviii+1171Google Scholar
  19. E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115 (1962)CrossRefGoogle Scholar
  20. M.G. Harrison, Equilibrium and dynamics of collisionless current sheets (2009). The University of St Andrews, PhD thesisGoogle Scholar
  21. M.G. Harrison, T. Neukirch, One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet. Phys. Rev. Lett. 102.13, pp. 135003-+ (2009a)Google Scholar
  22. M.G. Harrison, T. Neukirch, Some remarks on one-dimensional forcefree Vlasov-Maxwell equilibria. Phys. Plasmas 16.2, 022106-+ (2009b)Google Scholar
  23. M. Hesse, M. Kuznetsova, K. Schindler, J. Birn, Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection. Phys. Plasmas 12.10, pp. 100704-+ (2005)Google Scholar
  24. W.P. Johnson, The curious history of Faà di Bruno’s formula. Amer. Math. Monthly 109(3), 217–234 (2002)MathSciNetMATHGoogle Scholar
  25. K.S. Kölbig, The complete Bell polynomials for certain arguments in terms of Stirling numbers of the first kind. J. Comput. Appl. Math. 51(1), 113–116 (1994)MathSciNetCrossRefGoogle Scholar
  26. D.Y. Kolotkov, I.Y. Vasko, V.M. Nakariakov, Kinetic model of forcefree current sheets with non-uniform temperature. Phys. Plasmas 22.11, 112902, p. 112902 (2015)Google Scholar
  27. H. Li, K. Nishimura, D.C. Barnes, S.P. Gary, S.A. Colgate, Magnetic dissipation in a force-free plasma with a sheet-pinch configuration. Phys. Plasmas 10, 2763–2771 (2003)ADSCrossRefGoogle Scholar
  28. G.E. Marsh, Force-Free Magnetic Fields: Solutions (Topology and Applications. World Scientific, Singapore, 1996)Google Scholar
  29. E. Moratz, E.W. Richter, Elektronen-Geschwindigkeitsverteilungsfunktionen für kraftfreie bzw. teilweise kraftfreie Magnetfelder. Zeitschrift Naturforschung Teil A 21, p. 1963 (1966)Google Scholar
  30. P.M. Morse, H. Feshbach, Methods of theoretical physics. 2 volumes. (McGraw-Hill Book Co. 1953)Google Scholar
  31. H.E. Mynick, W.M. Sharp, A.N. Kaufman, Realistic Vlasov slab equilibria with magnetic shear. Phys. Fluids 22, 1478–1484 (1979)ADSCrossRefGoogle Scholar
  32. T. Neukirch, Magnetic field extrapolation. In: D.E. Innes, A. Lagg, S.A. Solanki (eds.) Chromospheric and Coronal Magnetic Fields. vol. 596. ESA Special Publication (2005)Google Scholar
  33. T. Neukirch, F. Wilson, M.G. Harrison, A detailed investigation of the properties of a Vlasov-Maxwell equilibrium for the force-free Harris sheet. Phys. Plasmas 16(12), 122102 (2009)ADSCrossRefGoogle Scholar
  34. K. Nishimura, S.P. Gary, H. Li, S.A. Colgate, Magnetic reconnection in a force-free plasma: simulations of micro- and macroinstabilities. Phys. Plasmas 10, 347–356 (2003)ADSCrossRefGoogle Scholar
  35. E.V. Panov, A.V. Artemyev, R. Nakamura, W. Baumjohann, Two types of tangential magnetopause current sheets: cluster observations and theory. J. Geophys. Res. (Space Physics) 116, A12204, A12204 (2011)Google Scholar
  36. A. Petrukovich, A. Artemyev, I. Vasko, R. Nakamura, L. Zelenyi, Current Sheets in the Earth Magnetotail: Plasma and magnetic field structure with cluster project observations. Space Sci. Rev. 188, 311–337 (2015)ADSCrossRefGoogle Scholar
  37. E. Priest, T. Forbes, Magnetic Reconnection (Cambridge University Press, Cambridge, UK, 2000)CrossRefGoogle Scholar
  38. P.L. Pritchett, F.V. Coroniti, Three-dimensional collisionless magnetic reconnection in the presence of a guide field. J. Geophys. Res. (Space Physics) 109.A18, pp. 1220-+ (2004)Google Scholar
  39. J. Riordan, An introduction to combinatorial analysis. Wiley Publications in Mathematical Statistics. John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, pp. xi+244 (1958)Google Scholar
  40. J.-I. Sakai, A. Matsuo, Three-dimensional dynamics of relativistic flows in pair plasmas with force-free magnetic configuration. Phys. Plasmas 11(6), 3251–3258 (2004)ADSCrossRefGoogle Scholar
  41. T. Sakurai, Computational modeling of magnetic fields in solar active regions. Space Sci. Rev. 51, 11–48 (1989)ADSGoogle Scholar
  42. K. Schindler, Physics of Space Plasma Activity. (Cambridge University Press, 2007)Google Scholar
  43. A. Sestero, Self-consistent description of a warm stationary plasma in a uniformly sheared magnetic field. Phys. Fluids 10, 193–197 (1967)ADSCrossRefGoogle Scholar
  44. J.B. Taylor, Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986)Google Scholar
  45. J.B. Taylor, Relaxation of Toroidal Plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141 (1974)Google Scholar
  46. I.Y. Vasko, A.V. Artemyev, A.A. Petrukovich, H.V. Malova, Thin current sheets with strong bell-shape guide field: cluster observations and models with beams. Ann. Geophys. 32, 1349–1360 (2014)ADSCrossRefGoogle Scholar
  47. G.E. Vekstein, N.A. Bobrova, S.V. Bulanov, On the motion of charged particles in a sheared force-free magnetic field. J. Plasma Phys. 67, 215–221 (2002)ADSCrossRefGoogle Scholar
  48. T. Wiegelmann, T. Sakurai, solar force-free magnetic fields. Living Rev. Solar Phys. 9.5 (2012)Google Scholar
  49. F. Wilson, Equilibrium and stability properties of collisionless current sheet models (2013). The University of St Andrews, PhD thesisGoogle Scholar
  50. F. Wilson, O. Allanson, T. Neukirch, The collisionless tearing mode in a force-free current sheet (In preparation) (2017)Google Scholar
  51. F. Wilson, T. Neukirch, M. Hesse, M.G. Harrison, C.R. Stark, Particlein- cell simulations of collisionless magnetic reconnection with a nonuniform guide field. Phys. Plasmas 23.3, p. 032302 (2016)Google Scholar
  52. F. Wilson, T. Neukirch, A family of one-dimensional Vlasov-Maxwell equilibria for the force-free Harris sheet. Phys. Plasmas 18(8), 082108 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations