Advertisement

Recent Advancements and Perspective About Digital Holography: A Super-Tool in Biomedical and Bioengineering Fields

  • F. Merola
  • B. Mandracchia
  • L. Miccio
  • P. Memmolo
  • V. Bianco
  • M. Mugnano
  • P. L. Maffettone
  • M. Villone
  • E. Di Maio
  • V. Ferraro
  • Z. Wang
  • V. Pagliarulo
  • S. Grilli
  • P. Ferraro
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Digital holographic microscopy (DHM) has become a technique utilized widely for sample inspection, having many applications in different fields of science and technology. The capability for recovering the complex amplitude distribution scattered by the sample permits numerical refocus after acquisition and quantitative phase imaging. These are two of the features that make DHM a very versatile microscopy technique. The standard DHM system is based on a Mach–Zehnder interferometer that can be configured for operating in transmission or reflection modes, working in either the in-line or off-axis architecture. With the benefit of such special characteristics, DHM is used in basic research as much in the industry. Here we review some of the recent advancements for the label-free inspection of biological samples and the study of thin films.

Keywords

Digital holography Microscopy Tomography 3D tracking Microfluidics 

References

  1. 1.
    Mertz, J.: Optical sectioning microscopy with planar or structured illumination. Nat. Methods. 8, 811–819 (2011)CrossRefGoogle Scholar
  2. 2.
    Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., et al.: Optical coherence tomography. Science. 254, 1178–1181 (1991)CrossRefGoogle Scholar
  3. 3.
    Yi, J., Liu, W.Z., Chen, S.Y., Backman, V., Sheibani, N., et al.: Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light Sci Appl. 4, e334 (2015)CrossRefGoogle Scholar
  4. 4.
    Choi, W., Fang-Yen, C., Badizadegan, K., Oh, S., Lue, N., et al.: Tomographic phase microscopy. Nat. Methods. 4, 717–719 (2007)CrossRefGoogle Scholar
  5. 5.
    Kim, K., Kim, K.S., Park, H., Ye, J.C., Park, Y.K.: Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express. 21, 32269–32278 (2013)CrossRefGoogle Scholar
  6. 6.
    Charrière, F., Marian, A., Montfort, F., Kuehn, J., Colomb, T., et al.: Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31, 178–180 (2006)CrossRefGoogle Scholar
  7. 7.
    Kim, T., Zhou, R.J., Mir, M., Babacan, S.D., Carney, P.S., et al.: White-light diffraction tomography of unlabelled live cells. Nat. Photonics. 8, 256–263 (2014)CrossRefGoogle Scholar
  8. 8.
    Mir, M., Tangella, K., Popescu, G.: Blood testing at the single cell level using quantitative phase and amplitude microscopy. Biomed. Opt. Express. 2, 3259–3266 (2011)CrossRefGoogle Scholar
  9. 9.
    Kim, Y., Shim, H., Kim, K., Park, H., Jang, S., et al.: Profiling individual human red blood cells using common-path diffraction optical tomography. Sci. Rep. 4, 6659 (2014)CrossRefGoogle Scholar
  10. 10.
    Sung, Y., Lue, N., Hamza, B., Martel, J., Irimia, D., et al.: Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel. Phys Rev Appl. 1, 014002 (2014)CrossRefGoogle Scholar
  11. 11.
    Yoon, J., Kim, K., Park, H., Choi, C., Jang, S., et al.: Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomed. Opt. Express. 6, 3865–3875 (2015)CrossRefGoogle Scholar
  12. 12.
    Bishara, W., Zhu, H.Y., Ozcan, A.: Holographic opto-fluidic microscopy. Opt. Express. 18, 27499–27510 (2010)CrossRefGoogle Scholar
  13. 13.
    Isikman, S.O., Bishara, W., Zhu, H.Y., Ozcan, A.: Optofluidic tomography on a chip. Appl. Phys. Lett. 98, 161109 (2011)CrossRefGoogle Scholar
  14. 14.
    Isikman, S.O., Bishara, W., Mavandadi, S., Yu, F.W., Feng, S., et al.: Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc. Natl. Acad. Sci. U. S. A. 108, 7296–7301 (2011)CrossRefGoogle Scholar
  15. 15.
    Arpali, S.A., Arpali, C., Coskun, A.F., Chiang, H.H., Ozcan, A.: High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab Chip. 12, 4968–4971 (2012)CrossRefGoogle Scholar
  16. 16.
    Horstmeyer, R., Chung, J., Ou, X., Zheng, G., Yang, C.: Diffraction tomography with Fourier ptychography. Optica. 3, 827–835 (2016)CrossRefGoogle Scholar
  17. 17.
    Kamilov, U.S., Papadopoulos, I.N., Shoreh, M.H., Goy, A., Vonesch, C., et al.: Learning approach to optical tomography. Optica. 2, 517–522 (2015)CrossRefGoogle Scholar
  18. 18.
    Psaltis, D., Quake, S.R., Yang, C.: Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 442, 381–386 (2006)CrossRefGoogle Scholar
  19. 19.
    Lue, N., Choi, W., Popescu, G., Badizadegan, K., Dasari, R.R., Feld, M.S.: Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion. Opt. Express. 16, 16240–16246 (2008)CrossRefGoogle Scholar
  20. 20.
    Merola, F., Memmolo, P., Miccio, L., Savoia, R., Mugnano, M., Fontana, A., D’Ippolito, G., Sardo, A., Iolascon, A., Gambale, A., Ferraro, P.: Tomographic flow cytometry by digital holography. Light Sci Appl. 5, e16241 (2017)CrossRefGoogle Scholar
  21. 21.
    Pégard, N.C., Toth, M.L., Driscoll, M., Fleischer, J.W.: Flow scanning optical tomography. Lab Chip. 14, 4447–4450 (2014)CrossRefGoogle Scholar
  22. 22.
    Habaza, M., Kirschbaum, M., Guernth-Marschner, C., Dardikman, G., Barnea, I., Korenstein, R., Duschl, C., Shaked, N.T.: Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation. Adv. Sci. 4, 1600205 (2017)CrossRefGoogle Scholar
  23. 23.
    Habaza, M., Gilboa, B., Roichman, Y., Shaked, N.T.: Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers. Opt. Lett. 40, 1881–1884 (2015)CrossRefGoogle Scholar
  24. 24.
    Padgett, M., Di Leonardo, R.: Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip. 11, 1196–1205 (2011)CrossRefGoogle Scholar
  25. 25.
    Merola, F., Miccio, L., Memmolo, P., Di Caprio, G., Galli, A., et al.: Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab Chip. 13, 4512–4516 (2013)CrossRefGoogle Scholar
  26. 26.
    Memmolo, P., Miccio, L., Merola, F., Gennari, O., Netti, P.A., et al.: 3D morphometry of red blood cells by digital holography. Cytometry A. 85, 1030–1036 (2014)CrossRefGoogle Scholar
  27. 27.
    Memmolo, P., Paturzo, M., Javidi, B., Netti, P.A., Ferraro, P.: Refocusing criterion via sparsity measurements in digital holography. Opt. Lett. 39, 4719–4722 (2014)CrossRefGoogle Scholar
  28. 28.
    Memmolo, P., Miccio, L., Paturzo, M., Di Caprio, G., Coppola, G., Netti, P.A., Ferraro, P.: Recent advances in holographic 3D particle tracking. Adv. Opt. Photon. 7, 713–755 (2015)CrossRefGoogle Scholar
  29. 29.
    Memmolo, P., Miccio, L., Finizio, A., Netti, P.A., Ferraro, P.: Holographic tracking of living cells by three-dimensional reconstructed complex wavefronts alignment. Opt. Lett. 39, 2759–2762 (2014)CrossRefGoogle Scholar
  30. 30.
    Merola, F., Miccio, L., Memmolo, P., Paturzo, M., Grilli, S., Ferraro, P.: Simultaneous optical manipulation, 3-D tracking, and imaging of micro-objects by digital holography in microfluidics. IEEE Photonics J. 4(2), 451–454 (2012)CrossRefGoogle Scholar
  31. 31.
    Wang, L.P., Zheng, B.H.: Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. J. Environ. Sci. 20, 1363–1372 (2008)CrossRefGoogle Scholar
  32. 32.
    Miccio, L., Memmolo, P., Merola, F., Netti, P.A., Ferraro, P.: Red blood cell as an adaptive optofluidic microlens. Nat. Commun. 6, 6502 (2015)CrossRefGoogle Scholar
  33. 33.
    Villone, M., Memmolo, P., Merola, F., Mugnano, M., Miccio, L., Maffettone, P.L., Ferraro, P.: Full-angle tomographic phase microscopy of flowing quasi-spherical cells. Lab Chip. 18, 126 (2018)CrossRefGoogle Scholar
  34. 34.
    Heng, X., et al.: Optofluidic microscopy-a method for implementing a high resolution optical microscope on a chip. Lab Chip. 6, 1274–1276 (2006)CrossRefGoogle Scholar
  35. 35.
    Vercruysse, D., Dusa, A., Stahl, R., Vanmeerbeeck, G., de Wijs, K., Liu, C., Prodanov, D., Peumans, P., Lagae, L.: Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer. Lab Chip. 15(4), 1123–1132 (2015)CrossRefGoogle Scholar
  36. 36.
    Wu, J., et al.: Optical imaging techniques in microfluidics and their applications. Lab Chip. 12, 3566–3575 (2012)CrossRefGoogle Scholar
  37. 37.
    Ferraro, P., Wax, A., Zalevsky, Z. (eds.): Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Science & Business Media, vol. 46, Berlin (2011)Google Scholar
  38. 38.
    Latychevskaia, T., Fink, H.W.: Solution to the twin image problem in holography. Phys. Rev. Lett. 98, 233901 (2007)CrossRefGoogle Scholar
  39. 39.
    Bianco, V., Mandracchia, B., Marchesano, V., Pagliarulo, V., Olivieri, F., Coppola, S., et al.: Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light Sci Appl. 6(9), e17055 (2017)CrossRefGoogle Scholar
  40. 40.
    Mandracchia, B., Bianco, V., Wang, Z., Mugnano, M., Bramanti, A., Paturzo, M., Ferraro, P.: Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting. Lab Chip. 17(16), 2831–2838 (2017)CrossRefGoogle Scholar
  41. 41.
    Marmottant, P., Hilgenfeldt, S.: Controlled vesicle deformation and lysis by single oscillating bubbles. Nature. 423, 153–156 (2003)CrossRefGoogle Scholar
  42. 42.
    Massol, H., Koyaguchi, T.: The effect of magma flow on nucleation of gas bubbles in a volcanic conduit. J. Volcanol. Geotherm. Res. 143, 69–88 (2005)CrossRefGoogle Scholar
  43. 43.
    Salerno, A., Di Maio, E., Iannace, S., Netti, P.A.: Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. J. Porous. Mater. 19, 181–188 (2012)CrossRefGoogle Scholar
  44. 44.
    Wang, Z., Mandracchia, B., Ferraro, V., Tammaro, D., Di Maio, E., Maffettone, P.L., Ferraro, P.: Interferometric measurement of film thickness during bubble blowing. Proc. SPIE Int. Soc. Opt. Eng. 10333, 6936 (2017)Google Scholar
  45. 45.
    Calabuig, A., Mugnano, M., Miccio, L., Grilli, S., Ferraro, P.: Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy. J. Biophotonics. 9, 1–9 (2016)CrossRefGoogle Scholar
  46. 46.
    Ash, W., Kim, M.: Digital holography of total internal reflection. Opt. Express. 16, 9811–9820 (2008)CrossRefGoogle Scholar
  47. 47.
    Li, S., Zhong, J.: Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography. Biomed. Opt. Express. 3, 3190–3202 (2012)CrossRefGoogle Scholar
  48. 48.
    Mandracchia, B., Gennari, O., Marchesano, V., Paturzo, M., Ferraro, P.: Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy. J. Biophotonics. 10(9), 1163–1170 (2017)CrossRefGoogle Scholar
  49. 49.
    Mandracchia, B., Gennari, O., Bramanti, A., Grilli, S., Ferraro, P.: Label-free quantification of the effects of lithium niobate polarization on cell adhesion via holographic microscopy. J. Biophotonics. (2018). https://doi.org/10.1002/jbio.201700332 CrossRefGoogle Scholar
  50. 50.
    Mandracchia, B., Pagliarulo, V., Paturzo, M., Ferraro, P.: Surface plasmon resonance imaging by holographic enhanced mapping. Anal. Chem. 87(8), 4124–4128 (2015)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • F. Merola
    • 1
    • 2
  • B. Mandracchia
    • 1
    • 2
  • L. Miccio
    • 1
    • 2
  • P. Memmolo
    • 1
    • 2
  • V. Bianco
    • 2
    • 3
  • M. Mugnano
    • 1
    • 2
  • P. L. Maffettone
    • 2
    • 3
  • M. Villone
    • 2
    • 3
  • E. Di Maio
    • 2
    • 3
  • V. Ferraro
    • 2
    • 3
  • Z. Wang
    • 1
    • 2
  • V. Pagliarulo
    • 1
    • 2
  • S. Grilli
    • 1
    • 2
  • P. Ferraro
    • 1
    • 2
  1. 1.CNR-ISASI, Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Pozzuoli NAItaly
  2. 2. NEAPoLIS Numerical and Experimental Advanced Program on Liquids and Interface SystemsNaplesItaly
  3. 3. Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale—DICMaPIUniversity of Naples Federico IINaplesItaly

Personalised recommendations