Numerical Construction of Nonsmooth Control Lyapunov Functions

  • Robert Baier
  • Philipp BraunEmail author
  • Lars Grüne
  • Christopher M. Kellett
Part of the Lecture Notes in Mathematics book series (LNM, volume 2227)


Lyapunov’s second method is one of the most successful tools for analyzing stability properties of dynamical systems. If a control Lyapunov function is known, then asymptotic stabilizability of an equilibrium of the corresponding dynamical system can be concluded without the knowledge of an explicit solution of the dynamical system. Whereas necessary and sufficient conditions for the existence of nonsmooth control Lyapunov functions are known by now, constructive methods to generate control Lyapunov functions for given dynamical systems are not known up to the same extent. In this paper we build on previous work to compute (control) Lyapunov functions based on linear programming and mixed integer linear programming. In particular, we propose a mixed integer linear program based on a discretization of the state space where a continuous piecewise affine control Lyapunov function can be recovered from the solution of the optimization problem. Different to previous work, we incorporate a semiconcavity condition into the formulation of the optimization problem. Results of the proposed scheme are illustrated on the example of Artstein’s circles and on a two-dimensional system with two inputs. The underlying optimization problems are solved in Gurobi (2016,


Control Lyapunov functions Mixed integer programming Dynamical systems 

AMS Subject Classifications

93D30 90C11 93D05 93D20 



The authors acknowledge the numerical experiments of Sigurdur Hafstein who calculated a control Lyapunov function for the special case of Artstein’s circles. His approach with mixed-integer programming differs from the presented work but certainly was one source of motivation to develop another approach based on local semiconcavity.

The authors, P. Braun, L. Grüne and C. M. Kellett, are supported by the Australian Research Council (Grant number: ARC-DP160102138).


  1. 1.
    V. Andriano, A. Bacciotti, G. Beccari, Global stability and external stability of dynamical systems. Nonlinear Anal. Theory Methods Appl. 28(7), 1167–1185 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. Theory Methods Appl. 7(11), 1163–1173 (1983)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Baier, S.F. Hafstein, Numerical computation of control Lyapunov functions in the sense of generalized gradients, in MTNS 2014: Proceedings 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, 7–11 July 2014 (University of Groningen, Groningen, 2014), pp. 1173–1180Google Scholar
  4. 4.
    R. Baier, L. Gruüne, S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions. Discrete Contin. Dyn. Syst. Ser. B 17(1), 33–56 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory (Birkhauser, Boston, 1983), pp. 181–191Google Scholar
  6. 6.
    P. Cannarsa, C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, vol. 58 (Springer Science and Business Media, Berlin, 2004)zbMATHGoogle Scholar
  7. 7.
    F. Clarke, Lyapunov functions and discontinuous stabilizing feedback. Ann. Rev. Control 35(1), 13–33 (2011)CrossRefGoogle Scholar
  8. 8.
    F.H. Clarke, Y.S. Ledyaev, E.D. Sontag, A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Autom. Control 42(10), 1394–1407 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    F.H. Clarke, Y.S. Ledyaev, R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differ. Equ. 149, 69–114 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Giesl, S. Hafstein, Review on computational methods for Lyapunov functions. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2291–2331 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1., Mar 2014
  12. 12.
    I. Gurobi Optimization, Gurobi optimizer reference manual, 2016.
  13. 13.
    S.F. Hafstein, An algorithm for constructing Lyapunov functions. Electron. J. Differ. Equ. 8, 1–101 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    S.F. Hafstein, C.M. Kellett, H. Li, Computing continuous and piecewise affine Lyapunov functions for nonlinear systems. J. Comput. Dyn. 2(2), 227–246 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Johansson, Piecewise Linear Control Systems: A Computational Approach (Springer, Berlin, 2003)CrossRefGoogle Scholar
  16. 16.
    P. Julian, J. Guivant, A. Desages, A parametrization of piecewise linear Lyapunov functions via linear programming. Int. J. Control 72(7–8), 702–715 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    C.M. Kellett, Classical converse theorems in Lyapunov’s second method. Discrete Contin. Dynam. Syst. Ser. B 20(8), 2333–2360 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    C.M. Kellett, A.R. Teel, Uniform asymptotic controllability to a set implies locally Lipschitz control-Lyapunov function, in Proceedings of the 39th IEEE Conference on Decision and Control, Sydney (2000)Google Scholar
  19. 19.
    C.M. Kellett, A.R. Teel, Weak converse Lyapunov theorems and control-Lyapunov functions. SIAM J. Control Optim. 42(6), 1934–1959 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A.M. Lyapunov, The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992) (Original in Russian, Math. Soc. of Kharkov 1892)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.F. Marinósson, Lyapunov function construction for ordinary differential equations with linear programming. Dyn. Syst. 17(2), 137–150 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. 39(4), 1043–1064 (2000)MathSciNetCrossRefGoogle Scholar
  23. 23.
    E.D. Sontag, A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optim. 21(3), 462–471 (1983)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Robert Baier
    • 1
  • Philipp Braun
    • 1
    • 2
    Email author
  • Lars Grüne
    • 1
  • Christopher M. Kellett
    • 2
  1. 1.University of BayeuthChair of Applied MathematicsBayreuthGermany
  2. 2.University of NewcastleSchool of Electrical Engineering and ComputingCallaghanAustralia

Personalised recommendations