Skip to main content

Decentralized Consensus Optimization and Resource Allocation

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2227))

Abstract

We consider the problems of consensus optimization and resource allocation, and we discuss decentralized algorithms for solving such problems. By “decentralized”, we mean the algorithms are to be implemented in a set of networked agents, whereby each agent is able to communicate with its neighboring agents. For both problems, every agent in the network wants to collaboratively minimize a function that involves global information, while having access to only partial information. Specifically, we will first introduce the two problems in the context of distributed optimization, review the related literature, and discuss an interesting “mirror relation” between the problems. Afterwards, we will discuss some of the state-of-the-art algorithms for solving the decentralized consensus optimization problem and, based on the “mirror relationship”, we then develop some algorithms for solving the decentralized resource allocation problem. We also provide some numerical experiments to demonstrate the efficacy of the algorithms and validate the methodology of using the “mirror relation”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Even for special topologies such as a “star” shaped network, it is considered as decentralized since the agent at the “center” has a similar/same computational ability as the others in the network and is not responsible for any extra work of coordination.

  2. 2.

    Suppose that a sequence {x(k)} converges to x in some norm ∥⋅∥. The convergence is: (i) Q-linear if there is λ ∈ (0,  1) such that \(\frac {\|x(k+1)-x^*\|}{\|x(k)-x^*\|} \leq \lambda \) for all k; (ii) R-linear if there is λ ∈ (0,  1) and some positive constant C such that ∥x(k) − x ∥≤  k for all k. Both of these rates are geometric. They are often referred to as global rates to distinguish them from the case when the given relations are valid for some sufficiently large k. The difference between these two types of geometric rate is in that Q-linear rate implies monotonic decrease of ∥x(k) − x ∥, while R-linear rate does not. We will use “geometric(ally)” and “linear(ly)” interchangeably when it does not cause confusion.

  3. 3.

    A nonnegative sequence {a k} is said to be convergent to 0 at an O(1∕k) rate if \({\lim \sup }_{k\rightarrow \infty } ka_k<+\infty \). In contrast, it is said to have an o(1∕k) rate if \({\lim \sup }_{k\rightarrow \infty } ka_k=0\).

  4. 4.

    When an algorithm has convergence rate of O(θ(k)), we say that the rate is sublinear if \(\lim _{k\rightarrow +\infty }\frac {\lambda ^k}{\theta (k)}=0\) for any constant λ ∈ (0,  1). A typical sublinear rates include O(1∕k p) with p > 0.

  5. 5.

    See Ref. [78] for the definition of “dual friendly”.

  6. 6.

    A description of the range for δ can be found in [49].

  7. 7.

    A more specific description of the range for δ can be found in [49].

  8. 8.

    Copyright Ⓒ 2017 Society for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

  9. 9.

    To guarantee connectedness of the graph, we first grow a random tree; then uniformly randomly add edges into the graph to reach the specified connectivity ratio.

References

  1. N.S. Aybat, E.Y. Hamedani, A distributed ADMM-like method for resource sharing under conic constraints over time-varying networks (2016). arXiv preprint arXiv:1611.07393

    Google Scholar 

  2. T. Başar, S.R. Etesami, A. Olshevsky, Convergence time of quantized metropolis consensus over time-varying networks. IEEE Trans. Autom. Control 61(12), 4048–4054 (2016)

    Article  MathSciNet  Google Scholar 

  3. J. Bazerque, G. Giannakis, Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Trans. Signal Process. 58, 1847–1862 (2010)

    Article  MathSciNet  Google Scholar 

  4. D. Bertsekas, Distributed asynchronous computation of fixed points. Math. Program. 27(1), 107–120 (1983)

    Article  MathSciNet  Google Scholar 

  5. D.P. Bertsekas, Incremental proximal methods for large scale convex optimization. Math. Program. 129, 163–195 (2011)

    Article  MathSciNet  Google Scholar 

  6. D.P. Bertsekas, Incremental aggregated proximal and augmented Lagrangian algorithms. Technical report, Laboratory for Information and Decision Systems Report LIDS-P-3176, MIT (2015)

    Google Scholar 

  7. D.P. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, 2nd edn. (Athena Scientific, Nashua, 1997)

    Google Scholar 

  8. D. Bertsekas, A. Nedić, A. Ozdaglar, Convex Analysis and Optimization (Athena Scientific, Belmont, 2003)

    Google Scholar 

  9. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  10. K. Cai, H. Ishii, Average consensus on arbitrary strongly connected digraphs with time-varying topologies. IEEE Trans. Autom. Control 59(4), 1066–1071 (2014)

    Article  MathSciNet  Google Scholar 

  11. V. Cevher, S. Becker, M. Schmidt, Convex optimization for big data: scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal Process. Mag. 31(5), 32–43 (2014)

    Article  Google Scholar 

  12. A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, P. Tiwari, The electrical resistance of a graph captures its commute and cover times. Comput. Complex. 6(4), 312–340 (1996)

    Article  MathSciNet  Google Scholar 

  13. T.-H. Chang, M. Hong, X. Wang, Multi-agent distributed optimization via inexact consensus ADMM. IEEE Trans. Signal Process. 63(2), 482–497 (2015)

    Article  MathSciNet  Google Scholar 

  14. A. Chen, A. Ozdaglar, A fast distributed Proximal-Gradient method, in The 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2012), pp. 601–608

    Google Scholar 

  15. A. Cherukuri, J. Cortés, Initialization-free distributed coordination for economic dispatch under varying loads and generator commitment. Automatica 74, 183–193 (2016)

    Article  MathSciNet  Google Scholar 

  16. D. Coppersmith, U. Feige, J. Shearer, Random walks on regular and irregular graphs. SIAM J. Discret. Math. 9(2), 301–308 (1996)

    Article  MathSciNet  Google Scholar 

  17. T.T. Doan, C.L. Beck, Distributed primal dual methods for economic dispatch in power networks (2016). arXiv preprint arXiv:1609.06287

    Google Scholar 

  18. T.T. Doan, A. Olshevsky, Distributed resource allocation on dynamic networks in quadratic time. Syst. Control Lett. 99, 57–63 (2017)

    Article  MathSciNet  Google Scholar 

  19. J. Duchi, A. Agarwal, M. Wainwright, Dual averaging for distributed optimization: convergence analysis and network scaling. IEEE Trans. Autom. Control 57(3), 592–606 (2012)

    Article  MathSciNet  Google Scholar 

  20. P. Forero, A. Cano, G. Giannakis, Consensus-based distributed support vector machines. J. Mach. Learn. Res. 59, 1663–1707 (2010)

    MathSciNet  MATH  Google Scholar 

  21. L. Gan, U. Topcu, S. Low, Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 28(2), 940–951 (2013)

    Article  Google Scholar 

  22. B. Gharesifard, J. Cortes, Distributed strategies for generating weight-balanced and doubly stochastic digraphs. Eur. J. Control 18(6), 539–557 (2012)

    Article  MathSciNet  Google Scholar 

  23. F. Guo, C. Wen, J. Mao, Y. Song, Distributed economic dispatch for smart grids with random wind power. IEEE Trans. Smart Grid 7(3), 1572–1583 (2016)

    Article  Google Scholar 

  24. M. Gurbuzbalaban, A. Ozdaglar, P. Parrilo, On the convergence rate of incremental aggregated gradient algorithms (2015). Available on arxiv at http://arxiv.org/abs/1506.02081

  25. M. Hong, T. Chang, Stochastic proximal gradient consensus over random networks (2015). arXiv preprint arXiv:1511.08905

    Google Scholar 

  26. H. Huang, Q. Ling, W. Shi, J. Wang, Collaborative resource allocation over a hybrid cloud center and edge server network. Int. J. Comput. Math. 35(4), 421–436 (2017)

    MathSciNet  MATH  Google Scholar 

  27. D. Jakovetic, J. Xavier, J. Moura, Fast distributed gradient methods. IEEE Trans. Autom. Control 59, 1131–1146 (2014)

    Article  MathSciNet  Google Scholar 

  28. S. Kar, G. Hug, Distributed robust economic dispatch in power systems: a consensus +  innovations approach, in IEEE Power and Energy Society General Meeting (2012), pp. 1–8

    Google Scholar 

  29. D. Kempe, A. Dobra, J. Gehrke, Gossip-based computation of aggregate information, in Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (2003), pp. 482–491

    Google Scholar 

  30. J. Koshal, A. Nedić, U.V. Shanbhag, Distributed algorithms for aggregative games on graphs. Oper. Res. 64(3), 680–704 (2016)

    Article  MathSciNet  Google Scholar 

  31. H. Lakshmanan, D.P. De Farias, Decentralized resource allocation in dynamic networks of agents. SIAM J. Optim. 19(2), 911–940 (2008)

    Article  MathSciNet  Google Scholar 

  32. D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chains and Mixing Times (American Mathematical Society, Providence, 2009)

    MATH  Google Scholar 

  33. Z. Li, W. Shi, M. Yan, A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates (2017). arXiv preprint arXiv:1704.07807

    Google Scholar 

  34. T. Lindvall, Lectures on the Coupling Method (Dover Publications, Newburyport, 2002)

    MATH  Google Scholar 

  35. Q. Ling, W. Shi, G. Wu, A. Ribeiro, Dlm: decentralized linearized alternating direction method of multipliers. IEEE Trans. Signal Process. 63(15), 4051–4064 (2015)

    Article  MathSciNet  Google Scholar 

  36. P. Lorenzo, G. Scutari, Distributed nonconvex optimization over networks, in IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2015), pp. 229–232

    Google Scholar 

  37. P. Lorenzo, G. Scutari, Distributed nonconvex optimization over time-varying networks, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 4124–4128

    Google Scholar 

  38. P. Lorenzo, G. Scutari, NEXT: in-network nonconvex optimization, in IEEE Transactions on Signal and Information Processing over Networks (2016)

    Google Scholar 

  39. Q. Lü, H. Li, Geometrical convergence rate for distributed optimization with time-varying directed graphs and uncoordinated step-sizes (2016). arXiv preprint arXiv:1611.00990

    Google Scholar 

  40. G. Mateos, J. Bazerque, G. Giannakis, Distributed sparse linear regression. IEEE Trans. Signal Process. 58, 5262–5276 (2010)

    Article  MathSciNet  Google Scholar 

  41. A. Mokhtari, W. Shi, Q. Ling, A. Ribeiro, DQM: decentralized quadratically approximated alternating direction method of multipliers (2015). arXiv preprint arXiv:1508.02073

    Google Scholar 

  42. A. Mokhtari, W. Shi, Q. Ling, A. Ribeiro, A decentralized second-order method with exact linear convergence rate for consensus optimization (2016). arXiv preprint arXiv:1602.00596

    Google Scholar 

  43. I. Necoara, Random coordinate descent algorithms for multi-agent convex optimization over networks. IEEE Trans. Autom. Control 58(8), 2001–2012 (2013)

    Article  MathSciNet  Google Scholar 

  44. A. Nedić, Asynchronous broadcast-based convex optimization over a network. IEEE Trans. Autom. Control 56(6), 1337–1351 (2011)

    Article  MathSciNet  Google Scholar 

  45. A. Nedić, D.P. Bertsekas, Convergence rate of incremental subgradient algorithms, in Stochastic Optimization: Algorithms and Applications (Kluwer Academic Publishers, Boston, 2000), pp. 263–304

    Google Scholar 

  46. A. Nedić, D.P. Bertsekas, Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12(1), 109–138 (2001)

    Article  MathSciNet  Google Scholar 

  47. A. Nedić, A. Olshevsky, Stochastic gradient-push for strongly convex functions on time-varying directed graphs (2014). arXiv preprint arXiv:1406.2075

    Google Scholar 

  48. A. Nedić, A. Olshevsky, Distributed optimization over time-varying directed graphs. IEEE Trans. Autom. Control 60(3), 601–615 (2015)

    Article  MathSciNet  Google Scholar 

  49. A. Nedić, A. Olshevsky, W. Shi, Improved convergence rates for distributed resource allocation (2017). arXiv preprint arXiv:

    Google Scholar 

  50. A. Nedić, A. Ozdaglar, Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54, 48–61 (2009)

    Article  MathSciNet  Google Scholar 

  51. A. Nedić, D.P. Bertsekas, V. Borkar, Distributed asynchronous incremental subgradient methods, in Proceedings of the March 2000 Haifa Workshop “Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications” (Elsevier, Amsterdam, 2001)

    Google Scholar 

  52. A. Nedić, A. Olshevsky, A. Ozdaglar, J. Tsitsiklis, On distributed averaging algorithms and quantization effects. IEEE Trans. Autom. Control 54(11), 2506–2517 (2009)

    Article  MathSciNet  Google Scholar 

  53. A. Nedić, A. Olshevsky, C. Uribe, Fast convergence rates for distributed non-Bayesian learning (2015). arXiv preprint arXiv:1508.05161

    Google Scholar 

  54. A. Nedić, A. Olshevsky, W. Shi, Achieving geometric convergence for distributed optimization over time-varying graphs (2016). arXiv preprint arXiv:1607.03218

    Google Scholar 

  55. A. Nedić, A. Olshevsky, W. Shi, C.A. Uribe, Geometrically convergent distributed optimization with uncoordinated step-sizes (2016). arXiv preprint arXiv:1609.05877

    Google Scholar 

  56. Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, vol. 87 (Springer Science and Business Media, Berlin, 2013)

    MATH  Google Scholar 

  57. A. Olshevsky, Efficient information aggregation strategies for distributed control and signal processing, Ph.D. thesis, Massachusetts Institute of Technology, 2010

    Google Scholar 

  58. A. Olshevsky, Linear time average consensus on fixed graphs and implications for decentralized optimization and multi-agent control (2016). arXiv preprint arXiv:1411.4186v6

    Google Scholar 

  59. G. Qu, N. Li, Harnessing smoothness to accelerate distributed optimization (2016). arXiv preprint arXiv:1605.07112

    Google Scholar 

  60. G. Qu, N. Li, Accelerated distributed Nesterov gradient descent (2017). arXiv preprint arXiv:1705.07176

    Google Scholar 

  61. M. Rabbat, R. Nowak, Distributed optimization in sensor networks, in Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (ACM, New York, 2004), pp. 20– 27

    Google Scholar 

  62. S. Ram, V. Veeravalli, A. Nedić, Distributed non-autonomous power control through distributed convex optimization, in INFOCOM (2009), pp. 3001–3005

    Google Scholar 

  63. S. Ram, A. Nedić, V. Veeravalli, Incremental stochastic subgradient algorithms for convex optimization. SIAM J. Optim. 20(2), 691–717 (2009)

    Article  MathSciNet  Google Scholar 

  64. S.S. Ram, A. Nedić, V. Veeravalli, Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 147(3), 516–545 (2010)

    Article  MathSciNet  Google Scholar 

  65. S.S. Ram, A. Nedić, V.V. Veeravalli, A new class of distributed optimization algorithms: application to regression of distributed data. Optim. Methods Softw. 27(1), 71–88 (2012)

    Article  MathSciNet  Google Scholar 

  66. W. Ren, Consensus based formation control strategies for multi-vehicle systems, in Proceedings of the American Control Conference (2006), pp. 4237–4242

    Google Scholar 

  67. R. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    Book  Google Scholar 

  68. A. Sayed, Diffusion adaptation over networks. Acad. Press Libr. Signal Process. 3, 323–454 (2013)

    Article  Google Scholar 

  69. K. Scaman, F. Bach, S. Bubeck, Y. Lee, L. Massoulié, Optimal algorithms for smooth and strongly convex distributed optimization in networks (2017). arXiv preprint arXiv:1702.08704

    Google Scholar 

  70. H. Seifi, M. Sepasian, Electric Power System Planning: Issues, Algorithms and Solutions (Springer Science and Business Media, Berlin, 2011)

    Book  Google Scholar 

  71. W. Shi, Q. Ling, K. Yuan, G. Wu, W. Yin, On the linear convergence of the ADMM in decentralized consensus optimization. IEEE Trans. Signal Process. 62(7), 1750–1761 (2014)

    Article  MathSciNet  Google Scholar 

  72. W. Shi, Q. Ling, G. Wu, W. Yin, A proximal gradient algorithm for decentralized composite optimization. IEEE Trans. Signal Process. 63(22), 6013–6023 (2015)

    Article  MathSciNet  Google Scholar 

  73. W. Shi, Q. Ling, G. Wu, W. Yin, EXTRA: an exact first-order algorithm for decentralized consensus optimization. SIAM J. Optim. 25(2), 944–966 (2015)

    Article  MathSciNet  Google Scholar 

  74. Y. Sun, G. Scutari, D. Palomar, Distributed nonconvex multiagent optimization over time-varying networks (2016). arXiv preprint arXiv:1607.00249

    Google Scholar 

  75. H. Terelius, U. Topcu, R. Murray, Decentralized multi-agent optimization via dual decomposition, in 18th IFAC World Congress (2011)

    Article  Google Scholar 

  76. T.M.D. Tran, A.Y. Kibangou, Distributed estimation of graph Laplacian Eigen-values by the alternating direction of multipliers method. IFAC Proc. Vol. 47(3), 5526–5531 (2014)

    Article  Google Scholar 

  77. J. Tsitsiklis, D. Bertsekas, M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    Article  MathSciNet  Google Scholar 

  78. C.A. Uribe, S. Lee, A. Gasnikov, A. Nedić, Optimal algorithms for distributed optimization (2017). arXiv preprint arXiv:1712.00232

    Google Scholar 

  79. D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato, Newton-Raphson consensus for distributed convex optimization. IEEE Trans. Autom. Control 61(4), 994–1009 (2016)

    Article  MathSciNet  Google Scholar 

  80. M. Wang, D.P. Bertsekas, Incremental constraint projection-proximal methods for non-smooth convex optimization. Lab for Information and Decision Systems Report LIDS-P- 2907, MIT (2013).

    Google Scholar 

  81. E. Wei, A. Ozdaglar, On the O(1∕k) convergence of asynchronous distributed alternating direction method of multipliers (2013). arXiv preprint arXiv:1307.8254

    Google Scholar 

  82. T. Wu, K. Yuan, Q. Ling, W. Yin, A.H. Sayed, Decentralized consensus optimization with asynchrony and delays, in 50th Asilomar Conference on Signals, Systems and Computers (2016), pp. 992–996

    Google Scholar 

  83. C. Xi, U. Khan, DEXTRA: a fast algorithm for optimization over directed graphs. IEEE Trans. Autom. Control PP(99), 1–1 (2017)

    Google Scholar 

  84. L. Xiao, S. Boyd, S. Lall, Distributed average consensus with time-varying metropolis weights (2006), available: http://www.stanford.edu/boyd/papers/avg_metropolis

  85. L. Xiao, S. Boyd, S. Kim, Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)

    Article  Google Scholar 

  86. J. Xu, Augmented distributed optimization for networked systems. Ph.D. thesis, Nanyang Technological University, 2016

    Google Scholar 

  87. J. Xu, S. Zhu, Y. Soh, L. Xie, Augmented distributed gradient methods for multi-agent optimization under uncoordinated constant stepsizes, in Proceedings of the 54th IEEE Conference on Decision and Control (CDC) (2015), pp. 2055–2060

    Google Scholar 

  88. T. Yang, J. Lu, D. Wu, J. Wu, G. Shi, Z. Meng, K.H. Johansson, A distributed algorithm for economic dispatch over time-varying directed networks with delays. IEEE Trans. Ind. Electron. 64(6), 5095–5106 (2017)

    Article  Google Scholar 

  89. K. Yuan, Q. Ling, W. Yin, On the convergence of decentralized gradient descent (2013). arXiv preprint arXiv:1310.7063

    Google Scholar 

  90. F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato, Multidimensional Newton-Raphson consensus for distributed convex optimization, in American Control Conference (ACC), 2012 (IEEE, Piscataway, 2012), pp. 1079–1084

    Google Scholar 

  91. J. Zeng, W. Yin, ExtraPush for convex smooth decentralized optimization over directed networks. J. Comput. Math. 35(4), 381–394 (2017)

    Article  MathSciNet  Google Scholar 

  92. Y. Zhang, G. Giannakis, Efficient decentralized economic dispatch for microgrids with wind power integration, in 6th Annual IEEE Green Technologies Conference (GreenTech) (2014), pp. 7–12

    Google Scholar 

  93. M. Zhu, S. Martinez, Discrete-time dynamic average consensus. Automatica 46(2), 322–329 (2010)

    Article  MathSciNet  Google Scholar 

  94. M. Zhu, S. Martinez, On distributed convex optimization under inequality and equality constraints. IEEE Trans. Autom. Control 57(1), 151–164 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of A.N. and A.O. was supported by the Office of Naval Research grant N000014-16-1-2245. The work of A.O. was also supported by the NSF award CMMI-1463262 and AFOSR award FA-95501510394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelia Nedić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nedić, A., Olshevsky, A., Shi, W. (2018). Decentralized Consensus Optimization and Resource Allocation. In: Giselsson, P., Rantzer, A. (eds) Large-Scale and Distributed Optimization. Lecture Notes in Mathematics, vol 2227. Springer, Cham. https://doi.org/10.1007/978-3-319-97478-1_10

Download citation

Publish with us

Policies and ethics