Advertisement

Ocimum Genome Sequencing—A Futuristic Therapeutic Mine

  • Shubhra Rastogi
  • Ajit Kumar Shasany
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Next-generation sequencing (NGS) platforms from the past decade are in the continuous efforts of changing the impact of sequencing on our current knowledge about plant genes, genomes, and their regulation. Holy basil (Ocimum tenuiflorum L. or sanctum L.) genome sequencing has also paved the path for deeper exploration of the medicinal properties of this beneficial herb making it a true ‘elixir of life.’ The draft genome sequence of the holy basil has not only opened the avenues for the drug discovery but has also widened the prospects of the molecular breeding for development of new improved plant varieties.

Keywords

Holy basil Genome Next-generation sequencing Chloroplast genome Secondary metabolites Drug discovery 

References

  1. Ahmad A, Rasheed N, Gupta P, Singh S, Siripurapu KB, Ashraf GM, Kumar R, Chand K, Maurya R, Banu N, Al-Sheeha M (2012) Novel Ocimumoside A and B as anti-stress agents: modulation of brain monoamines and antioxidant systems in chronic unpredictable stress model in rats. Phytomedicine 19(7):639–647PubMedCrossRefGoogle Scholar
  2. Ahmed I, Biggs PJ, Matthews PJ, Collins LJ, Hendy MD (2012) Mutational dynamics of aroid chloroplast genomes. Genome Biol Evol 4:1316–1323PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmed I, Biggs PJ, Matthews PJ, Naeem M, Lockhart PJ (2013) Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa. Mol Ecol Resour 13:929–937PubMedCrossRefGoogle Scholar
  4. Anand A, Jayaramaiah RH, Beedkar SD, Singh PA, Joshi RS, Mulani FA, Dholakia BB, Punekar SA, Gade WN, Thulasiram HV, Giri AP (2016) Comparative functional characterization of eugenol synthase from four different Ocimum species: implications on eugenol accumulation. Biochim Biophys Acta 1864(11):1539–1547PubMedCrossRefGoogle Scholar
  5. Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bansal S, Narnoliya LK, Mishra B, Chandra M, Yadav RK, Sangwan NS (2018) HMG-CoA reductase from Camphor Tulsi (Ocimum kilimandscharicum) regulated MVA dependent biosynthesis of diverse terpenoids in homologous and heterologous plant systems. Sci Rep 8(1):3547PubMedPubMedCentralCrossRefGoogle Scholar
  7. Banu LA, Bari MA (2007) Protocol establishment for multiplication and regeneration of Ocimum sanctum Linn. An important medicinal plant with high religious value in Bangladesh. Plant Sci 2(5):530–537Google Scholar
  8. Banu LA, Bari MA, Islam R (1999) Callus induction and plant regeneration of Ocimum sanctum. In: Abstract. Proceedings of the 3rd international plant tissue culture conference, Dhaka, Bangladesh, 46Google Scholar
  9. Banu LA, Bari MA, Haque E (2001) In vitro propagation of Ocimum sanctum L. through nodal explants. J Genet Biotechnol 2:143–146Google Scholar
  10. Begum F, Amin MN, Azad MAK (2002) In vitro rapid clonal propagation of Ocimum basilicum L. Plant Tiss Cult 12:27–35Google Scholar
  11. Ben-Naim Y, Falach L, Cohen Y (2017) Transfer of downy mildew resistance from wild basil (Ocimum americanum) to sweet basil (O. basilicum). Phytopathology 108(1):114–123PubMedCrossRefGoogle Scholar
  12. Berim A, Gang DR (2013) The roles of a flavone-6-hydroxylase and 7-O-demethylation in the flavone biosynthetic network of sweet basil. J Biol Chem 288(3):1795–1805PubMedCrossRefGoogle Scholar
  13. Berim A, Gang DR (2018) Production of methoxylated flavonoids in yeast using ring A hydroxylases and flavonoid O-methyltransferases from sweet basil. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-018-9043-0CrossRefPubMedGoogle Scholar
  14. Berim A, Kim MJ, Gang DR (2014a) Identification of a unique 2-oxoglutarate-dependent flavone 7-O-demethylase completes the elucidation of the lipophilic flavone network in basil. Plant Cell Physiol 56(1):126–136PubMedCrossRefGoogle Scholar
  15. Berim A, Park JJ, Gang DR (2014b) Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. Plant J 80(3):385–395PubMedCrossRefGoogle Scholar
  16. Bhasin M (2012) Ocimum-Taxonomy, medicinal potentialities and economic value of essential oil. J Biosphere 1:48–50Google Scholar
  17. Bhattacharyya P, Bishayee A (2013) Ocimum sanctum Linn. (Tulsi): an ethnomedicinal plant for the prevention and treatment of cancer. Anticancer Drugs 24(7):659–666PubMedCrossRefGoogle Scholar
  18. Bhau BS (2012) Molecular markers in the improvement of the medicinal plants. Med Aromat Plants 1:e108.  https://doi.org/10.4172/2167-0412.1000e108CrossRefGoogle Scholar
  19. Brien PO (2009) Basil in traditional Chinese medicine. How foods heal column, vol 7, pp 30–31. https://www.meridian-acupuncture-clinic.com/support-files/basil-in-tcm.pdf
  20. Cabrera J, Saavedra E, del Rosario H, Perdomo J, Loro JF, Cifuente DA, Tonn CE, García C, Quintana J, Estévez F (2016) Gardenin B-induced cell death in human leukemia cells involves multiple caspases but is independent of the generation of reactive oxygen species. Chem-Biol Interact 256:220–227PubMedCrossRefPubMedCentralGoogle Scholar
  21. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23(4):180–185PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chan HT, Daniell H (2015) Plant-made oral vaccines against human infectious diseases—are we there yet? Plant Biotechnol J 13:1056–1070PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen S, Xu J, Liu C, Zhu Y, Nelson DR et al (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3:913PubMedPubMedCentralCrossRefGoogle Scholar
  24. Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242PubMedCrossRefPubMedCentralGoogle Scholar
  25. De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74PubMedPubMedCentralCrossRefGoogle Scholar
  26. Deschamps C, Simon J (2002) Agrobacterium tumefaciens-mediated transformation of Ocimum basilicum and O. citriodorum. Plant Cell Rep 21(4):359–364CrossRefGoogle Scholar
  27. Dhawale PG, Ghyare BP (2016) Antimicrobial activity and preliminary phytochemical studies on Blepharis repens (Vahl) roth. J Nat Sci Res 6(3):2225–3186Google Scholar
  28. Dhawan SS, Shukla P, Gupta P, Lal RK (2016) A cold-tolerant evergreen interspecific hybrid of Ocimum kilimandscharicum and Ocimum basilicum: analyzing trichomes and molecular variations. Protoplasma 253(3):845–855PubMedCrossRefGoogle Scholar
  29. Dode LB, Bobrowski VL, Braga EJB, Seixas FK, Schuch MW (2003) In vitro propagation of Ocimum basilicum L. (Lamiaceae). Acta Sci Biol Sci 25(2):435–437Google Scholar
  30. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S et al (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ekmekci H, Aasim M (2014) In vitro plant regeneration of Turkish sweet basil (Ocimum basilicum L.). J Anim Plant Sci 24:1758–1765Google Scholar
  33. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG et al (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 3:e2802PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fraj H, Hannachi C, Werbrouck SPO (2017) Efficient adventitious shoot organogenesis on root explants of Ocimum basilicum L. Acta Hort 1187:89–92.  https://doi.org/10.17660/actahortic.2017.1187.10CrossRefGoogle Scholar
  36. Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125(2):539–555PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gang DR, Beuerle T, Ullmann P, Werck-Reichhart D, Pichersky E (2002a) Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol 130(3):1536–1544PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E (2002b) Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14(2):505–519PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gopi C, Sekhar YN, Ponmurugan P (2006) In vitro multiplication of Ocimum gratissimum L. through direct regeneration. Afr J Biotechnol 5(9):723–726Google Scholar
  40. Grabowski H, Cockburn I, Long G (2006) The market for follow-on biologics: how will it evolve? Health Aff 25:1291–1301CrossRefGoogle Scholar
  41. Gupta P, Yadav DK, Siripurapu KB, Palit G, Maurya R (2007) Constituents of Ocimum sanctum with antistress activity. J Nat Prod 70(9):1410–1416PubMedCrossRefPubMedCentralGoogle Scholar
  42. Holtz BR, Berquist BR, Bennett LD, Kommineni VJ, Munigunti RK, White EL (2015) Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnol J 13:1180–1190PubMedCrossRefPubMedCentralGoogle Scholar
  43. Jayaramaiah RH, Anand A, Beedkar SD, Dholakia BB, Punekar SA, Kalunke RM, Gade WN, Thulasiram HV, Giri AP (2016) Functional characterization and transient expression manipulation of a new sesquiterpene synthase involved in β-caryophyllene accumulation in Ocimum. Biochem Biophys Res Commun 473(1):265–271PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jin S, Daniell H (2014) Expression of gamma-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnol J 12:1274–1285PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jin S, Kanagaraj A, Verma D, Lange T, Daniell H (2011) Release of hormones from conjugates: chloroplast expression of beta-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiol 155:222–235PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327PubMedCrossRefPubMedCentralGoogle Scholar
  47. Jin S, Singh ND, Li L, Zhang X, Daniell H (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13:435–446PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kapteyn J, Qualley AV, Xie Z, Fridman E, Dudareva N, Gang DR (2007) Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell 19(10):3212–3229PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kayastha BL (2014) Queen of herbs tulsi (Ocimum sanctum) removes impurities from water and plays disinfectant role. J Med Plants Stud 2(2):1–8Google Scholar
  50. Khakdan F, Nasiri J, Ranjbar M, Alizadeh H (2017) Water deficit stress fluctuates expression profiles of 4Cl, C3H, COMT, CVOMT and EOMT genes involved in the biosynthetic pathway of volatile phenylpropanoids alongside accumulation of methylchavicol and methyleugenol in different Iranian cultivars of basil. J Plant Physiol 218:74–83PubMedCrossRefPubMedCentralGoogle Scholar
  51. Khan S, Fahim N, Singh P, Rahman LU (2015) Agrobacterium tumefaciens mediated genetic transformation of Ocimum gratissimum: a medicinally important crop. Indust Crops Prod 71:138–146CrossRefGoogle Scholar
  52. Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer, New York.  https://doi.org/10.1007/978-0-387-70638-2
  53. Kim HJ, Chen F, Wang X, Rajapakse NC (2006) Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). J Agric Food Chem 54:2327–2332PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kohli N, Westerveld DR, Ayache AC, Verma A, Shil P, Prasad T et al (2014) Oral delivery of bioencapsulated proteins across blood–brain and blood-retinal barriers. Mol Therap 22:535–546CrossRefGoogle Scholar
  55. Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22:1245e1254PubMedPubMedCentralCrossRefGoogle Scholar
  56. Koulintchenko M, Temperley RJ, Mason PA, Dietrich A, Lightowlers RN (2006) Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression Hum Mol Genet 15:143e154PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kugita M, Akira K, Yuhei Y, Yuko T, Tohoru M et al (2003) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res 31:716–721PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kwon KC, Daniell H (2015) Low-cost oral delivery of protein drugs bioencapsulated in plant cells. Plant Biotechnol J 13:1017–1022PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kwon KC, Nityanandam R, New JS, Daniell H (2013) Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Plant Biotechnol J 11:77–86PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lakshmi PS, Verma D, Yang X, Lloyd B, Daniell H (2013) Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 8:e54708PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lam KY, Ling APK, Koh RY, Wong YP, Say YH (2016) A review on medicinal properties of orientin. Adv Pharmacol Sci 1–9. http://dx.doi.org/10.1155/2016/4104595CrossRefGoogle Scholar
  62. Lee SB, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J 9:100–115PubMedPubMedCentralCrossRefGoogle Scholar
  63. Leelavathi D, Kuppan N, Yashoda (2014) A calibrated protocol for direct regeneration of multiple shoots from in vitro apical bud of Ocimum basilicum—an important aromatic medicinal plant. J Pharm Res 8(6):733–735Google Scholar
  64. Leushkin EV, Sutormin RA, Nabieva ER, Penin AA, Kondrashov AS, Logacheva MD (2013) The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genom 14:476CrossRefGoogle Scholar
  65. Li X, Yang Y, Robrt JH, Maurizio R, Yitao W et al (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90:157–166PubMedCrossRefPubMedCentralGoogle Scholar
  66. Liu CW, Lin CC, Chen JJ, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744PubMedCrossRefPubMedCentralGoogle Scholar
  67. Liu X, Wu S, Xu J, Sui C, Wei J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharmaceut Sin B 7(3):292–302CrossRefGoogle Scholar
  68. Lössl AG, Waheed MT (2011) Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol J 9:527–539PubMedCrossRefPubMedCentralGoogle Scholar
  69. Marrassini C, Davicino R, Acevedo C, Anesini C, Gorzalczany S, Ferraro G (2011) Vicenin-2, a potential anti-inflammatory constituent of Urtica circularis. J Nat Prod 74(6):1503–1507PubMedCrossRefGoogle Scholar
  70. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S (2002) Evolutionary analysis of arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251PubMedCrossRefGoogle Scholar
  71. Mishra T (2015) Protocol establishment for multiplication and regeneration of ‘Holy Basil’ (Ocimum sanctum Linn). An important medicinal plant with high religious value in India. J Med Plants Stud 3(4):16–19Google Scholar
  72. Misra RC, Maiti P, Chanotiya CS, Shanker K, Ghosh S (2014) Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil. Plant Physiol 164(2):1028–1044CrossRefGoogle Scholar
  73. Misra RC, Kamthan M, Kumar S, Ghosh S (2016) A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep 6:25340PubMedPubMedCentralCrossRefGoogle Scholar
  74. Misra RC, Sharma S, Garg S, Chanotiya CS, Ghosh S (2017) Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but non-reduntant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis. New Phytol 214(2):706–720CrossRefGoogle Scholar
  75. Pattanayak P, Behera P, Das D, Panda SK (2010) Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharmacog Rev 4(7):95PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pattnaik S, Chand PK (1996) In vitro propagation of the medicinal herbs Ocimum americanum L. syn. O. canum Sims. (hoary basil) and Ocimum sanctum L. (holy basil). Plant Cell Rep 15(11):846–850PubMedCrossRefPubMedCentralGoogle Scholar
  77. Peter MH, Laura LF, John L, Mehrdad H, Sujeevan R (2009) CBOL plant working group A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797CrossRefGoogle Scholar
  78. Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li XE, Li C, Liu J (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 8(2):e57607PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rastogi S, Kumar R, Chanotiya CS, Shanker K, Gupta MM, Nagegowda DA, Shasany AK (2013) 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant Cell Physiol 54:1238–1252PubMedCrossRefGoogle Scholar
  80. Rastogi S, Meena S, Bhattacharya A, Ghosh S, Shukla RK, Sangwan NS, Lal RK, Gupta MM, Lavania UC, Gupta V, Nagegowda DA (2014) De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genom 15(1):588CrossRefGoogle Scholar
  81. Rastogi S, Kalra A, Gupta V, Khan F, Lal RK, Tripathi AK, Parameswaran S, Gopalakrishnan C, Ramaswamy G, Shasany AK (2015) Unravelling the genome of Holy basil: an “incomparable” “elixir of life” of traditional Indian medicine. BMC Genom 16(1):413CrossRefGoogle Scholar
  82. Renu IK, Haque I, Kumar M, Poddar R, Bandopadhyay R, Rai A, Mukhopadhyay K (2014) Characterization and functional analysis of eugenol O-methyltransferase gene reveal metabolite shifts, chemotype specific differential expression and developmental regulation in Ocimum tenuiflorum L. Mol Biol Rep 41(3):1857–1870PubMedCrossRefGoogle Scholar
  83. Saha S, Ghosh PD, Sengupta C (2010) An efficient method for micropropagation of Ocimum basilicum L. Indian J Plant Physiol 15(2):168–172Google Scholar
  84. Sahoo Y, Pattnaik SK, Chand PK (1997) In vitro clonal propagation of an aromatic medicinal herb Ocimum basilicum L. (sweet basil) by axillary shoots proliferation. In Vitro Cell Dev Biol-Plant 33(4):293–296CrossRefGoogle Scholar
  85. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15(4):227–239PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schneider C (2005) Chemistry and biology of vitamin E. Mol Nutr Food Res 49:7–30PubMedCrossRefGoogle Scholar
  87. Shahzad MA, Faisal M, Ahmad N, Anis M, Alatar A, Hend AA (2012) An efficient system for in vitro multiplication of Ocimum basilicum through node culture. Afr J Biotechnol 11(22):6055–6059CrossRefGoogle Scholar
  88. Shakya AK (2016) Medicinal plants: future source of new drugs. Int J Herb Med 4(4):59–64Google Scholar
  89. Sharma T (2010) Toxic effect of Ocimum sanctum plant extract against Acrida exaltata (Orthoptera: acrididae) adults. J Env Res Dev 4(4):1008–1012Google Scholar
  90. Sharma NK, Choudhary RC, Kumar M (2014) An improved plant regeneration system of Ocimum sanctum L.—an important Indian holy basil plant. J Cell Tiss Res 14(1):41–43Google Scholar
  91. Shenoy V, Kwon KC, Rathinasabapathy A, Lin SN, Jin GY, Song CJ et al (2014) Oral delivery of angiotensin-converting enzyme 2 and angiotensin-(1–7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension 64:1248–1259PubMedPubMedCentralCrossRefGoogle Scholar
  92. Shin MS, Park JY, Lee J, Yoo HH, Hahm DH, Lee SC, Lee S, Hwang GS, Jung K, Kang KS (2017) Anti-inflammatory effects and corresponding mechanisms of cirsimaritin extracted from Cirsium japonicum var. maackii Maxim. Bioorg Med Chem Lett 27(14):3076–3080PubMedCrossRefPubMedCentralGoogle Scholar
  93. Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–3100PubMedCrossRefPubMedCentralGoogle Scholar
  94. Siddique I, Anis M (2007) Rapid micropropagation of Ocimum basilicum using shoot tip explants pre-cultured in thidiazuron supplemented liquid medium. Biol Planta 51(4):787–790CrossRefGoogle Scholar
  95. Singh NK, Sehgal CB (1999) Micropropagation of ‘Holy Basil’ (Ocimum sanctum Linn.) from young inflorescences of mature plants. Plant Growth Regul 29(3):161–166CrossRefGoogle Scholar
  96. Singh AK, Verma SS, Bansal KC (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res 19:113–119PubMedCrossRefPubMedCentralGoogle Scholar
  97. Spök A, Karner S, Stein AJ, Rodríguez-Cerezo E (2008) Plant molecular farming. Opportunities and challenges. JRC Sci Tech Rep 2008. http://ftp.jrc.es/EURdoc/JRC43873.pdf. Accessed 17 May 2016Google Scholar
  98. Sravanthi M, Mohan GK, Suryakala G, Rani MS, Shanker K (2016) Plant tissue culture: an alternative for production of useful secondary metabolites. J Pharmacog Phytochem 5(4):269Google Scholar
  99. Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A (2015) Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 70:84–93PubMedPubMedCentralCrossRefGoogle Scholar
  100. Torre S, Tattini M, Brunetti C, Guidi L, Gori A, Marzano C, Landi M, Sebastiani F (2016) De novo assembly and comparative transcriptome analyses of red and green morphs of sweet basil grown in full sunlight. PLoS ONE 11(8):0160370CrossRefGoogle Scholar
  101. Upadhyay AK, Chacko AR, Gandhimathi A, Ghosh P, Harini K, Joseph AP, Joshi AG, Karpe SD, Kaushik S, Kuravadi N, Lingu CS (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol 15(1):212PubMedPubMedCentralCrossRefGoogle Scholar
  102. Verma D, Kanagaraj A, Jin SX, Singh ND, Kolattukudy PE, Daniell H (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350PubMedPubMedCentralCrossRefGoogle Scholar
  103. Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Escherichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136:4048–4060PubMedPubMedCentralCrossRefGoogle Scholar
  104. Vines G (2004) Herbal harvests with a future: towards sustainable sources for medicinal plants. Plantlife International. www.plantlife.org.uk
  105. Vyas P, Mukhopadhyay K (2014) Development of a rapid and high frequency Agrobacterium rhizogenes mediated transformation protocol for Ocimum tenuiflorum. Biologia 69(6):765–770CrossRefGoogle Scholar
  106. Vyas P, Mukhopadhyay K (2017) Elicitation of phenylpropanoids and expression analysis of PAL gene in suspension cell culture of Ocimum tenuiflorum L. Proc Natl Acad Sci, India. Sect B: Biol Sci 1–11Google Scholar
  107. Waheed MT, Thones N, Muller M, Hassan SW, Mona NR (2011a) Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgen Res 20:271–282CrossRefGoogle Scholar
  108. Waheed MT, Thones N, Muller M, Hassan SW, Gottschamel J (2011b) Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. Plant Biotechnol J 9:651–660PubMedCrossRefGoogle Scholar
  109. Wang J, Dudareva N, Kish CM, Simon JE, Lewinsohn E, Pichersky E (1999) Nucleotide sequences of two cDNAs encoding caffeic acid O-methyltransferases from sweet basil (Ocimum basilicum). Plant Physiol 120:1205CrossRefGoogle Scholar
  110. Weber-Lot fi F, Ibrahim N, Boesch P, Cosset A, Konstantinov Y, Lightowlers RN, Dietrich A (2009) Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import. Biochim Biophys Acta 1787:320e327Google Scholar
  111. Xie Z, Kapteyn J, Gang DR (2008) A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J 54(3):349–361PubMedCrossRefGoogle Scholar
  112. Xu H, Song J, Luo H, Zhang Y, Li Q (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9(6):949–952PubMedPubMedCentralCrossRefGoogle Scholar
  113. Yamane K, Yasui Y, Ohnishi O (2003) Intraspecific cpDNA variations of diploid and tetraploid perennial buckwheat, Fagopyrum cymosum (Polygonaceae). Am J Bot 90:339–346PubMedCrossRefPubMedCentralGoogle Scholar
  114. Zarrouki B, Pillon NJ, Kalbacher E, Soula HA, N’jomen GN, Grand L, Chambert S, Geloen A, Soulage CO (2010) Cirsimarin, a potent antilipogenic flavonoid, decreases fat deposition in mice intra-abdominal adipose tissue. Int J Obesity 34(11):1566–1575PubMedCrossRefPubMedCentralGoogle Scholar
  115. Zhan X, Yang L, Wang D, Zhu JK, Lang Z (2016) De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress. BMC Genom 17(1):209CrossRefGoogle Scholar
  116. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994PubMedCrossRefGoogle Scholar
  117. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2):176–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Plant Biotechnology DivisionCSIR-Central Institute of Medicinal and Aromatic PlantsLucknowIndia

Personalised recommendations