Toward Redesigning Hybrid Maize Breeding Through Genomics-Assisted Breeding

  • D. C. Kadam
  • A. J. LorenzEmail author
Part of the Compendium of Plant Genomes book series (CPG)


The pure line method of corn breeding proposed by George Shull in 1909 provided the foundation for contemporary hybrid breeding. This method involved development of inbreds by self-pollination and their subsequent evaluation in single-cross combinations. Over the past hundred years, this method underwent several modifications to efficiently generate homozygous inbred lines and identify superior hybrid combinations. Nevertheless, identification of promising pairs of lines that produce superior commercial hybrids is still challenging and constitutes the most expensive and critical operation in hybrid breeding. Advances in genotyping, predictive modeling, and computational capacities in recent years led to the development genome-based approaches for prediction of genetic values for complex traits. Simulation and experimental studies of genomic prediction of hybrid performance in maize have shown very promising results. With this background, we describe in this chapter a typical structure of a contemporary phenotypic hybrid maize breeding program; introduce the genomic selection (GS) approach and its application to a hybrid maize breeding pipeline; and review results of genomic prediction studies for hybrid maize, with particular emphasis on prediction of single crosses. We conclude with a discussion on future research needs and potential alternative hybrid breeding schemes in light of the rapidly developing field of genomics-assisted breeding.


Genomic selection Hybrid breeding Single-cross performance General combining ability Specific combining ability Genetic gain 



We thank Amritpal Singh for the helpful discussion during the preparation of outline of this chapter. Dnyaneshwar C. Kadam was supported by Indian Council of Agricultural Research International Fellowship (ICAR-IF).


  1. Albrecht T, Auinger H-J, Wimmer V et al (2014) Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theor Appl Genet 127:1375–1386. Scholar
  2. Albrecht T, Wimmer V, Auinger H-J et al (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350. Scholar
  3. Assefa Y, Prasad PV, Carter P et al (2017) A new insight into corn yield: trends from 1987 through 2015. Crop Sci 57:2799–2811CrossRefGoogle Scholar
  4. Bao Y, Kurle JE, Anderson G, Young ND (2015) Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm. Mol Breed 35:128PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bernardo R (2003) Parental selection, number of breeding populations, and size of each population in inbred development. Theor Appl Genet 107:1252–1256PubMedCrossRefGoogle Scholar
  6. Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25CrossRefGoogle Scholar
  7. Bernardo R (1996) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56CrossRefGoogle Scholar
  8. Bernardo R (2009) Should maize doubled haploids be induced among F1 or F2 plants? Theor Appl Genet 119:255–262PubMedCrossRefGoogle Scholar
  9. Bernardo R (2010) Breeding for quantitative traits in plants. Stemma PressGoogle Scholar
  10. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  11. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090CrossRefGoogle Scholar
  12. Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental Maize populations under drought stress. Crop Sci 55(1):154. Scholar
  13. Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719CrossRefGoogle Scholar
  14. Bustos-Korts D, Malosetti M, Chapman S, van Eeuwijk F (2016) Modelling of genotype by environment interaction and prediction of complex traits across multiple environments as a synthesis of crop growth modelling, genetics and statistics. Crop systems biology. Springer, pp 55–82Google Scholar
  15. Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. State Qld Dep Prim Ind Fish BrisbGoogle Scholar
  16. Calus MPL, De Roos APW, Veerkamp RF et al (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553–561PubMedPubMedCentralCrossRefGoogle Scholar
  17. Charcosset A, Bonnisseau B, Touchebeuf O et al (1998) Prediction of maize hybrid silage performance using marker data: comparison of several models for specific combining ability. Crop Sci 38:38–44CrossRefGoogle Scholar
  18. Cheng S-H, Zhuang J-Y, Fan Y-Y et al (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966PubMedPubMedCentralCrossRefGoogle Scholar
  19. Combs E, Bernardo R (2013) Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. Plant Genome 6CrossRefGoogle Scholar
  20. Comstock RE, Robinson HF, Harvey PH (1949) Breeding procedure designed to make maximum use of both general and specific combining ability. Agron JGoogle Scholar
  21. Crossa J, Beyene Y, Kassa S et al (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 Genes Genomes Genet 3:1903–1926PubMedPubMedCentralCrossRefGoogle Scholar
  22. Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031PubMedPubMedCentralCrossRefGoogle Scholar
  23. Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3:e3395PubMedPubMedCentralCrossRefGoogle Scholar
  24. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499PubMedCrossRefGoogle Scholar
  25. de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345. Scholar
  26. dos Santos JPR, de Castro Vasconcellos RC, Pires LPM et al (2016) Inclusion of dominance effects in the multivariate GBLUP model. PLoS ONE 11:e0152045PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dudley JW, Maroof MA, Rufener GK (1991) Molecular markers and grouping of parents in maize breeding programs. Crop Sci 31:718–723CrossRefGoogle Scholar
  28. Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145CrossRefGoogle Scholar
  29. Duvick DN, Cassman KG (1999) Post–green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci 39:1622–1630CrossRefGoogle Scholar
  30. Eathington SR, Crosbie TM, Edwards MD et al (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S–154CrossRefGoogle Scholar
  31. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255CrossRefGoogle Scholar
  32. Endelman JB, Atlin GN, Beyene Y et al (2014) Optimal design of preliminary yield trials with genome-wide markers. Crop Sci 54:48–59CrossRefGoogle Scholar
  33. Frisch M, Thiemann A, Fu J et al (2010) Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor Appl Genet 120:441–450PubMedCrossRefPubMedCentralGoogle Scholar
  34. Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499Google Scholar
  35. Gianola D, de los Campos G, González-Recio O et al (2010) Statistical learning methods for genome-based analysis of quantitative traits. In: Proceedings of the 9th world congress on genetics applied to livestock production. Gesellschaft für Tierzuchtwissenschaften eV, pp 1–6Google Scholar
  36. Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776PubMedPubMedCentralCrossRefGoogle Scholar
  37. González-Recio O, Rosa GJ, Gianola D (2014) Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits. Livest Sci 166:217–231CrossRefGoogle Scholar
  38. Guo G, Zhao F, Wang Y et al (2014) Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet 15:30PubMedPubMedCentralCrossRefGoogle Scholar
  39. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397PubMedPubMedCentralGoogle Scholar
  40. Hallauer AR, Lopez-Perez E (1979) Comparisons among testers for evaluating lines of corn. In: Proceedings of the annual corn and sorghum research conference (USA)Google Scholar
  41. Hallauer AR, Miranda JB (1988) Quantitative genetics in plant breeding. Iowa StateGoogle Scholar
  42. Hallauer AR, Russell WA, Lamkey KR (1988) Corn breedingGoogle Scholar
  43. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443PubMedCrossRefPubMedCentralGoogle Scholar
  44. Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690CrossRefGoogle Scholar
  45. Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160CrossRefGoogle Scholar
  46. Hoisington D, Khairallah M, Reeves T et al (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci 96:5937–5943CrossRefGoogle Scholar
  47. Howard R, Carriquiry AL, Beavis WD (2014) Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3 Genes Genomes Genet 4:1027–1046PubMedPubMedCentralCrossRefGoogle Scholar
  48. Huang BE, Raghavan C, Mauleon R et al (2014) Efficient imputation of missing markers in low-coverage genotyping-by-sequencing data from multiparental crosses. Genetics 197:401–404PubMedPubMedCentralCrossRefGoogle Scholar
  49. Isidro J, Jannink J-L, Akdemir D et al (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158PubMedCrossRefGoogle Scholar
  50. Jacobson A, Lian L, Zhong S, Bernardo R (2014) General combining ability model for genomewide selection in a biparental cross. Crop Sci 54:895–905CrossRefGoogle Scholar
  51. Jacobson A, Lian L, Zhong S, Bernardo R (2015) Marker imputation before genomewide selection in biparental maize populations. Plant Genome 8CrossRefGoogle Scholar
  52. Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177CrossRefGoogle Scholar
  53. Jarquín D, Crossa J, Lacaze X et al (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jenkins MT, Brunson AM (1932) Methods of estimating inbred lines of maize in crossbred combinationsGoogle Scholar
  55. Jia Y, Jannink J-L (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jiang Y, Reif JC (2015) Modeling epistasis in genomic selection. Genetics 201:759–768PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kadam DC, Potts SM, Bohn MO et al (2016) Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline. G3 Genes Genomes Genet 6:3443–3453Google Scholar
  58. Kadam DC, Lorenz AJ (2018) Evaluation of nonparametric models for genomic prediction of early-stage single crosses in maize. Crop Sci (Accepted)Google Scholar
  59. Kucharik CJ, Ramankutty N (2005) Trends and variability in US corn yields over the twentieth century. Earth Interact 9:1–29CrossRefGoogle Scholar
  60. Kutka F, Conway P, Christensen J (2004) The heritage maize project (FNC00-301) study of open-pollinated corn: final report to the North Central region sustainable agriculture research and education program. Herit Maize Proj FNC 00-301 Study Open-Pollinated Corn Final Rep North Cent Reg Sustain Agric Res Educ Program NCR-SARE Program Univ Neb LincGoogle Scholar
  61. Lee EA, Ash MJ, Good B (2007) Re-examining the relationship between degree of relatedness, genetic effects, and heterosis in maize. Crop Sci 47:629–635CrossRefGoogle Scholar
  62. Legarra A, Robert-Granié C, Manfredi E, Elsen J-M (2008) Performance of genomic selection in mice. Genetics 180:611–618PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lian L, Jacobson A, Zhong S, Bernardo R (2014) Genomewide prediction accuracy within 969 maize biparental populations. Crop Sci 54:1514–1522CrossRefGoogle Scholar
  64. Lin Z, Hayes BJ, Daetwyler HD (2014) Genomic selection in crops, trees and forages: a review. Crop Pasture Sci 65:1177–1191CrossRefGoogle Scholar
  65. Longin CFH, Utz HF, Reif JC et al (2007) Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance. Theor Appl Genet 115:519–527PubMedCrossRefGoogle Scholar
  66. Lopez-Cruz M, Crossa J, Bonnett D et al (2015) Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. Genes Genomes Genet G3:g3–114Google Scholar
  67. Lorenz AJ (2013) Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3 Genes Genomes Genet 3:481–491PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lorenz AJ, Chao S, Asoro FG et al (2011) Genomic selection in plant breeding: knowledge and prospects. Advances in agronomy. Elsevier, pp 77–123Google Scholar
  69. Lorenz AJ, Smith KP (2015) Adding genetically distant individuals to training populations reduces genomic prediction accuracy in barley. Crop Sci 55:2657–2667CrossRefGoogle Scholar
  70. Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161PubMedCrossRefGoogle Scholar
  71. Lyra DH, de Freitas Mendonça L, Galli G et al (2017) Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids. Mol Breed 37:80CrossRefGoogle Scholar
  72. Maenhout S, De Baets B, Haesaert G (2010) Prediction of maize single-cross hybrid performance: support vector machine regression versus best linear prediction. Theor Appl Genet 120:415–427PubMedCrossRefGoogle Scholar
  73. Maenhout S, De Baets B, Haesaert G, Van Bockstaele E (2007) Support vector machine regression for the prediction of maize hybrid performance. Theor Appl Genet 115:1003–1013PubMedCrossRefGoogle Scholar
  74. Massman JM, Gordillo A, Lorenzana RE, Bernardo R (2013a) Genomewide predictions from maize single-cross data. Theor Appl Genet 126:13–22. Scholar
  75. Massman JM, Jung H-JG, Bernardo R (2013b) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58–66CrossRefGoogle Scholar
  76. Melchinger AE (1999) Genetic diversity and heterosis. Genet Exploit Heterosis Crops 99–118Google Scholar
  77. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  78. Moser G, Tier B, Crump RE et al (2009) A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol 41:56PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pérez P, de Los Campos G (2014) Genome-wide regression & prediction with the BGLR statistical package. Genetics 114Google Scholar
  80. Pérez-Rodríguez P, Gianola D, González-Camacho JM et al (2012) Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3 Genes Genomes Genet 2:1595–1605PubMedPubMedCentralCrossRefGoogle Scholar
  81. Poland J, Endelman J, Dawson J et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113CrossRefGoogle Scholar
  82. Prasanna BM, Chaikam V, Mahuku G (2012) Doubled haploid technology in maize breeding: theory and practice. CIMMYTGoogle Scholar
  83. Prasanna BM, Hoisington D (2003) Molecular breeding for maize improvement: an overviewGoogle Scholar
  84. Pratt RC (2004) An historical examination of the development and adoption of hybrid corn: a case study in Ohio. Maydica 49:155–172Google Scholar
  85. Prigge V, Melchinger AE (2012) Production of haploids and doubled haploids in maize. Plant cell culture protocols. Springer, pp 161–172Google Scholar
  86. Reif JC, Hallauer AR, Melchinger AE (2005) Heterosis and heterotic patterns in maize. Maydica 50:215Google Scholar
  87. Reif JC, Gumpert FM, Fischer S, Melchinger AE (2007) Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics 176(3):1931–1934. Scholar
  88. Riedelsheimer C, Czedik-Eysenberg A, Grieder C et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220PubMedCrossRefGoogle Scholar
  89. Riedelsheimer C, Endelman JB, Stange M et al (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194:493–503PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rincent R, Laloë D, Nicolas S et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rober FK, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50:275Google Scholar
  92. Rutkoski J, Benson J, Jia Y et al (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61CrossRefGoogle Scholar
  93. Schrag TA, Frish M, Dhillon BS, Melchinger AE (2009) Marker-based prediction of hybrid performance in maize single-crosses involving doubled haploids. Maydica 54:353Google Scholar
  94. Schrag TA, Melchinger AE, Sørensen AP, Frisch M (2006) Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL. Theor Appl Genet 113(6):1037–1047. Scholar
  95. Schrag TA, Westhues M, Schipprack W et al (2018) Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genetics 208:1373–1385PubMedCrossRefGoogle Scholar
  96. Schulthess AW, Wang Y, Miedaner T et al (2016) Multiple-trait-and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes. Theor Appl Genet 129:273–287PubMedCrossRefGoogle Scholar
  97. Schulz-Streeck T, Ogutu JO, Karaman Z et al (2012) Genomic selection using multiple populations. Crop Sci 52:2453–2461CrossRefGoogle Scholar
  98. Shull GH (1908) The composition of a field of maizeCrossRefGoogle Scholar
  99. Shull GH (1909) A pure-line method in corn breeding. J Hered 51–58CrossRefGoogle Scholar
  100. Smith CW (2004) Corn: origin, history, technology, and production. WileyGoogle Scholar
  101. Smith D, Cooper M (2004) Changes in performance, parentage, and genetic diversity of successful corn hybrids, 1930–2000. Corn Orig Hist Technol Prod 4:65Google Scholar
  102. Smith M, Seiter S, Mt. Pleasant J, Kutka F (2003) Performance of open-pollinated corn varieties for grain and silage production. In: Proceedings of the 58th Northeast corn improvement conferenceGoogle Scholar
  103. Solberg TR, Sonesson AK, Woolliams JA, others (2008) Genomic selection using different marker types and densities. J Anim Sci 86:2447–2454PubMedCrossRefGoogle Scholar
  104. Technow F, Bürger A, Melchinger AE (2013) Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. G3 Genes Genomes Genet 3:197–203PubMedPubMedCentralCrossRefGoogle Scholar
  105. Technow F, Gerke J (2017) Parent-progeny imputation from pooled samples for cost-efficient genotyping in plant breeding. PLoS ONE 12:e0190271PubMedPubMedCentralCrossRefGoogle Scholar
  106. Technow F, Riedelsheimer C, Schrag TA, Melchinger AE (2012) Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theor Appl Genet 125:1181–1194PubMedCrossRefGoogle Scholar
  107. Technow F, Schrag TA, Schipprack W et al (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355. Scholar
  108. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212CrossRefGoogle Scholar
  109. Tollenaar M, Ying J, Duvick DN (2000) Genetic gain in corn hybrids from the northern and central corn belt. In: Proceedings of the 55th corn and sorghum research conference. American Seed Trade Association Washington, DC, pp 53–62Google Scholar
  110. Tracy WF, Chandler MA (2006) The historical and biological basis of the concept of heterotic patterns in corn belt dent maize. In: Proceedings of plant breeding: the Arnel R. Hallauer international symposium. Wiley, pp 219–233Google Scholar
  111. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423PubMedCrossRefGoogle Scholar
  112. Viana JMS, Piepho H-P et al (2016) Quantitative genetics theory for genomic selection and efficiency of breeding value prediction in open-pollinated populations. Sci Agric 73:243–251CrossRefGoogle Scholar
  113. Vivek BS, Krishna GK, Vengadessan V et al (2017) Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome 10CrossRefGoogle Scholar
  114. Vuylsteke M, Kuiper M, Stam P (2000) Chromosomal regions involved in hybrid performance and heterosis: their AFLP®-based identification and practical use in prediction models. Heredity 85:208–218PubMedCrossRefGoogle Scholar
  115. Wegenast T, Longin CFH, Utz HF et al (2008) Hybrid maize breeding with doubled haploids. IV. Number versus size of crosses and importance of parental selection in two-stage selection for testcross performance. Theor Appl Genet 117:251–260PubMedCrossRefGoogle Scholar
  116. Westhues M, Schrag TA, Heuer C et al (2017) Omics-based hybrid prediction in maize. Theor Appl Genet 130:1927–1939PubMedCrossRefGoogle Scholar
  117. Windhausen VS, Atlin GN, Hickey JM et al (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. Genes Genomes Genet 2:1427–1436. Scholar
  118. Wu X-L, Beissinger TM, Bauck S et al (2011) A primer on high-throughput computing for genomic selection. Front Genet 2Google Scholar
  119. Xu Y, Xu C, Xu S (2017) Prediction and association mapping of agronomic traits in maize using multiple omic data. Heredity 119:174PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zenke-Philippi C, Thiemann A, Seifert F et al (2016) Prediction of hybrid performance in maize with a ridge regression model employed to DNA markers and mRNA transcription profiles. BMC Genom 17:262CrossRefGoogle Scholar
  121. Zhang X, Pérez-Rodríguez P, Burgueño J et al (2017) Rapid cycling genomic selection in a multi-parental tropical maize population. Genes Genomes Genet G3:g3–117Google Scholar
  122. Zhao Y, Gowda M, Liu W et al (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776PubMedCrossRefGoogle Scholar
  123. Zhong S, Dekkers JC, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Agronomy and Plant GeneticsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations