Advertisement

Evolution and Adaptation in the Maize Genome

  • Nancy Manchanda
  • Samantha J. Snodgrass
  • Jeffrey Ross-Ibarra
  • Matthew B. Hufford
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Maize (Zea mays ssp. mays) has been a prime model organism for understanding the processes of domestication and adaptation. During domestication, maize underwent drastic morphological changes that differentiate it from its teosinte progenitor such as reduced tillering and seed shattering and freeing of the grain from a stony fruit case. Likewise, post-domestication adaptation to new environments has allowed maize to expand to a distribution far exceeding its wild relatives and in fact to a greater range than any other domesticate. Previous work using traditional top-down approaches, such as quantitative trait locus mapping and genome-wide association, has been successful in identifying canonical candidates for domestication and adaptation. However, the recent availability of genomic data and development of new analytical tools offer the opportunity to increasingly look at these processes from the bottom-up based on genomic signatures of selection. Here we review progress thus far in genomic research of maize domestication and adaptation. We discuss the insights genomics has shed on our understanding of these processes and conclude with a future outlook for how genomics might be further applied to these fields.

Keywords

Domestication bottleneck Quantitative traits Crop expansion Gene flow 

References

  1. Aguirre-Liguori JA, Tenaillon MI, Vazquez-Lobo A, Gaut BS, Jaramillo-Correa JP, Montes-Hernandez S, Souza V, Eguiarte LE (2017) Connecting genomic patterns of local adaptation and niche suitability in teosintes. Mol Ecol 26(16):4226–4240CrossRefGoogle Scholar
  2. Alonso-Blanco C, El-Assal SED, Coupland G, Koornneef M (1998) Analysis of natural allelic variation at flowering time loci in the landsberg erecta and cape verde islands ecotypes of arabidopsis thaliana. Genetics 149(2):749–764PubMedPubMedCentralGoogle Scholar
  3. Amato J, Hudson JC (1996) Making the corn belt: a geographical history of middle-western agriculture (midwestern history and culture.). Am His Rev 101(2):576CrossRefGoogle Scholar
  4. Beadle GW (1972) The mystery of maize. Field Mus. Bull. 212–221Google Scholar
  5. Beavis WD (1998) QTL analyses: power, precision, and accuracy. CRC Press, pp 145–162Google Scholar
  6. Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J (2016) Recent demography drives changes in linked selection across the maize genome. Nat Plants 2(16):084Google Scholar
  7. Benz B, Cheng L, Leavitt SW, Eastoe C (2009) El riego and early maize agricultural evolution. Left Coast Press, Inc., Chap 5Google Scholar
  8. Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the vgt2 (zcn8) locus. PLoS ONE 8(8):1–17CrossRefGoogle Scholar
  9. Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize teosinte backcross resouce. Genetics 177:1915–1928CrossRefGoogle Scholar
  10. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Sofia da Silva H, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718CrossRefGoogle Scholar
  11. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC et al (2012) Maize hapmap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807CrossRefGoogle Scholar
  12. Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38(1):37–59CrossRefGoogle Scholar
  13. Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178(4):2433–2437CrossRefGoogle Scholar
  14. Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci 95(8):4441–4446CrossRefGoogle Scholar
  15. Fang Z, Pyhäjärvi T, Weber AL, Dawe RK, Glaubitz JC, González JdJS, Ross-Ibarra C, Doebley J, Morrell PL, Ross-Ibarra J (2012) Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191(3):883–894CrossRefGoogle Scholar
  16. da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MC, Hufnagel DE, Korneliussen TS, Vieira FG, Jakobsson M, Arriaza B, Willerslev E, Nielsen R, Hufford MB, Albrechtsen A, Ross-Ibarra J, Gilbert MTP (2015) The origin and evolution of maize in the Southwestern United States. Nat Plants 1. http://dx.doi.org/10.1038/nplants.2014.3
  17. Fustier M, Brandenburg J, Boitard S, Lapeyronnie J, Eguiarte LE, Vigouroux Y, Manicacci D, Tenaillon MI (2017) Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. Mol Ecol 26(10):2738–2756CrossRefGoogle Scholar
  18. Hake S, Ross-Ibarra J (2015) The natural history of model organisms: genetic, evolutionary and plant breeding insights from the domestication of maize. eLife  https://doi.org/10.7554/elife.05861
  19. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J (2011) Adaptation to climate across the arabidopsis thaliana genome. Science 334(6052):83–86CrossRefGoogle Scholar
  20. van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci 108(3):1088–1092Google Scholar
  21. Hoffmann AA, Sgrò CM, Weeks AR (2004) Chromosomal inversion polymorphisms and adaptation. Trends Ecol Evol 19(9):482–488CrossRefGoogle Scholar
  22. Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D, Wu L, Yang X, Jin W, Doebley JF, Tian F (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci 115(2):E334–E341CrossRefGoogle Scholar
  23. Hufford MB, Bilinski P, Pyhäjärvi T, Ross-Ibarra J (2012a) Teosinte as a model system for population and ecological genomics. Trends Genet 28(12):606–615CrossRefGoogle Scholar
  24. Hufford MB, Martinez-Meyer E, Gaut BS, Eguiarte LE, Tenaillon MI (2012b) Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight. PLOS ONE 7(11):1–9CrossRefGoogle Scholar
  25. Hufford MB, Xu X, van Heerwaarden J, Pyhäjä T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai J, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J (2012c) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811CrossRefGoogle Scholar
  26. Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9(e1003):477Google Scholar
  27. Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc. Natl Acad Sci 109(28):11,068–11,069CrossRefGoogle Scholar
  28. Kapun M, Fabian DK, Goudet J, Flatt T (2016) Genomic evidence for adaptive inversion clines in drosophila melanogaster. Mol Biol Evol 33(5):1317–1336CrossRefGoogle Scholar
  29. Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173(1):419–434CrossRefGoogle Scholar
  30. Lauter N, Doebley J (2002) Genetic variation for phenotypically invariant traits detected in teosinte: Implications for the evolution of novel forms. Genetics 160(1):333–342PubMedPubMedCentralGoogle Scholar
  31. Lauter N, Gustus C, Westerbergh A, Doebley J (2004) The inheritance and evolution of leaf pigmentation and pubescence in teosinte. Genetics 167(4):1949–1959CrossRefGoogle Scholar
  32. Lemmon ZH, Doebley JF (2014) Genetic dissection of a genomic region with pleiotropic effects on domestication traits in maize reveals multiple linked QTL. Genetics 198:345–353CrossRefGoogle Scholar
  33. Lemmon ZH, Bukowski R, Sun Q, Doebley JF (2014) The role of cis regulatory evolution in maize domestication. PLoS Genet 10(11):1–15CrossRefGoogle Scholar
  34. Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics 141(1):391–411PubMedPubMedCentralGoogle Scholar
  35. Lowry DB, Willis JH (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol 8(9):1–14CrossRefGoogle Scholar
  36. Mangelsdorf PC (1947) The origin and evolution of maize. Adv Genet 1:161–2017CrossRefGoogle Scholar
  37. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci 99(9):6080–6084CrossRefGoogle Scholar
  38. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740CrossRefGoogle Scholar
  39. Mei W, Stetter MG, Gates DJ, Stitzer MC, Ross-Ibarra J (2018) Adaptation in plant genomes: bigger is different. Am J Bot 105(1)Google Scholar
  40. Meng X, Muszynski MG, Danilevskaya ON (2011) The ft-like zcn8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23(3):942–960CrossRefGoogle Scholar
  41. Merrill WL, Hard RJ, Mabry JB, Fritz GJ, Adams KR, Roney JR, MacWilliams AC (2009) The diffusion of maize to the Southwestern United States and its impact. Proc Natl Acad Sci 106(50):21,019–21,026CrossRefGoogle Scholar
  42. Moose SP, Lauter N, Carlson SR (2004) The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity. Genetics 166(3):1451–1461CrossRefGoogle Scholar
  43. Piperno DR (2011) The origins of plant cultivation and domestication in the new world tropics 52(S4):S453–S470CrossRefGoogle Scholar
  44. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium b.p. maize from the central Balsas river valley, Mexico. Proc Natl Acad Sci 106(13):5019–5024CrossRefGoogle Scholar
  45. Purugganan MD, Fuller DQ (2011) Archaeological data reveal slow rates of evolution during plant domestication. Evolution 65(1):171–183CrossRefGoogle Scholar
  46. Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J (2013) Complex patterns of local adaptation in teosinte. Genome Biol Evol 5(9):1594–1609CrossRefGoogle Scholar
  47. Ramos-Madrigal J, Smith BD, Moreno-Mayar JV, Gopalakrishnan S, Ross-Ibarra J, Gilbert MTP, Wales N (2016) Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol 26:3195–3201CrossRefGoogle Scholar
  48. Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106(5):895–903CrossRefGoogle Scholar
  49. Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES (2016) Open chromatin reveals the functional maize genome. Proc Natl Acad SciGoogle Scholar
  50. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14(6):R55CrossRefGoogle Scholar
  51. Romero Navarro JA, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V, Ortega A, Banda AE, Montiel NOG, Ortiz-Monasterio I, Vincente FS, Espinoza AG, Atlin G, Wenzl P, Hearne S, Buckler ES (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 49:476–480CrossRefGoogle Scholar
  52. Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci 104(suppl 1):8641–8648CrossRefGoogle Scholar
  53. Ross-Ibarra J, Tenaillon M, Gaut BS (2009) Historical divergence and gene flow in the genus zea. Genetics 181(4):1399–1413CrossRefGoogle Scholar
  54. Sigmon B, Vollbrecht E (2010) Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol 19(7):1296–1311CrossRefGoogle Scholar
  55. Silva NCdA, Vidal R, Costa FM, Vaio M, Ogliari JB (2015) Presence of Zea luxurians (durieu and ascherson) bird in Southern Brazil: implications for the conservation of wild relatives of maize. PLoS ONE 10(10):1–16CrossRefGoogle Scholar
  56. Simons YB, Turchin MC, Pritchard JK, Sella G (2014) The deleterious mutation load is insensitive to recent population history. Nat Genet 46:220–224CrossRefGoogle Scholar
  57. Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35CrossRefGoogle Scholar
  58. Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (2015) Seed filling in domesticated maize and rice depends on sweet-mediated hexose transport. Nat Genet 47:1489–1493CrossRefGoogle Scholar
  59. Stetter MG, Thornton K, Ross-Ibarra J (2018) Genetic architecture and selective sweeps after polygenic adaptation to distant trait optima. BioRxiv 313247. https://doi.org/10.1101/313247
  60. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163CrossRefGoogle Scholar
  61. Swanson-Wagner R, Briskine R, Schaefer R, Hufford MB, Ross-Ibarra J, Myers CL, Tiffin P, Springer NM (2012) Reshaping of the maize transcriptome by domestication. Proc Natl Acad Sci 109(29):11,878–11,883CrossRefGoogle Scholar
  62. Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, Holland J, Kruse-Peeples M, Lepak N, Prim L, Romay MC, Ross-Ibarra J, Sanchez-Gonzalez JdJ, Schmidt C, Schuenemann VJ, Krause J, Matson RG, Weigel D, Buckler ES, Burbano HA (2017) Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357(6350):512–515CrossRefGoogle Scholar
  63. Takuno S, Ralph P, Swarts K, Elshire RJ, Glaubitz JC, Buckler ES, Hufford MB, Ross-Ibarra J (2015) Independent molecular basis of convergent highland adaptation in maize. Genetics 200:1297–1312CrossRefGoogle Scholar
  64. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21(7):1214–1225CrossRefGoogle Scholar
  65. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator ppd-h1 provides adaptation to photoperiod in barley. Science 310(5750):1031–1034CrossRefGoogle Scholar
  66. Vann L, Kono T, Pyhäjärvi T, Hufford MB, Ross-Ibarra J (2015) Natural variation in teosinte at the domestication locus teosinte branched1 (tb1). PeerJ 3:e900CrossRefGoogle Scholar
  67. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci 99(15):9650–9655CrossRefGoogle Scholar
  68. Wang H, Studer AJ, Zhao Q, Meeley R, Doebley JF (2015) Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in TGA1. Genetics 200(3):965–974CrossRefGoogle Scholar
  69. Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB (2017) Genome Biol 18Google Scholar
  70. Wills DM, Whipple CJ, Takuno S, Kursel LE, Shannon LM, Ross-Ibarra J, Doebley JF (2013) From many, one: genetic control of prolificacy during maize domestication. PLoS Genet 9(6):1–13CrossRefGoogle Scholar
  71. Wills DM, Fang Z, York AM, Holland JB, Doebley JF (2018) Defining the role of the mads-box gene, zea agamous-like1, a target of selection during maize domestication. J Hered 109(3):333–338CrossRefGoogle Scholar
  72. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308(5726):1310–1314CrossRefGoogle Scholar
  73. Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X, Tian F (2017) Complex genetic architecture underlies maize tassel domestication. New Phytol 214(2):852–864CrossRefGoogle Scholar
  74. Xue S, Bradbury P, Casstevens T, Holland JB (2016) Genetic architecture of domestication-related traits in maize. Genetics 204:13–99CrossRefGoogle Scholar
  75. Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, Li K, Yang N, Li Y, Zhong T, Li J, Chen Y, Yan J, Yang X, Xu M (2013) Cacta-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci 110(42):16,969–16,974CrossRefGoogle Scholar
  76. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95(7):1025–1032CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nancy Manchanda
    • 1
  • Samantha J. Snodgrass
    • 1
  • Jeffrey Ross-Ibarra
    • 2
  • Matthew B. Hufford
    • 1
  1. 1.Iowa State UniversityAmesUSA
  2. 2.University of CaliforniaDavisUSA

Personalised recommendations