Skip to main content

Whole Cardiac Tissue Bioscaffolds

  • Chapter
  • First Online:
Cardiac Extracellular Matrix

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1098))

Abstract

Bioscaffolds serve as structures for cells in building complex tissues and full organs including heart. Decellularizing cardiac tissue results in cell-free extracellular matrix (ECM) that can be used as a cardiac tissue bioscaffold. The field of whole-heart tissue engineering has been revolutionized since the 2008 publication of the first perfusion-decellularized whole heart, and since then, studies have shown how decellularized cardiac tissue retains its native architecture and biochemistry following recellularization. Chemical, enzymatic, and physical decellularization methods preserve the ECM to varying degrees with the widely accepted standard of less than 50 ng/mg of double-stranded DNA present in decellularized ECM. Following decellularization, replacement of cells occurs via recellularization: seeding cells into the decellularized ECM structure either via perfusion of cells into the vascular conduits, injection into parenchyma, or a combination of perfusion and injection. Endothelial cells are often perfused through existing vessel conduits to provide an endothelial lining of the vasculature, with cardiomyocytes and other parenchymal cells injected into the myocardium of decellularized ECM bioscaffolds. Uniform cell density and cell retention throughout the bioscaffold still needs to be addressed in larger animal models of the whole heart. Generating the necessary cell numbers and types remains a challenge. Still, recellularized cardiac tissue bioscaffolds offer therapeutic solutions to heart failure, heart valve replacement, and acute myocardial infarction. New technologies allow for decellularized ECM to be bioprinted into cardiac bioscaffolds or formed into a cardiac hydrogel patch. This chapter reviews the advances made in decellularization and recellularization of cardiac ECM bioscaffolds with a discussion of the potential clinical applications of ECM bioscaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1603–58.

    Google Scholar 

  2. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–544.

    Google Scholar 

  3. Cohn JN. Continue what we are doing to treat HF, but do it better. Nat Rev Cardiol. 2013;11:69–70.

    Article  Google Scholar 

  4. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–61.

    Article  Google Scholar 

  5. Wilhelm MJ. Long-term outcome following heart transplantation: current perspective. J Thorac Dis. 2015;7:549–51.

    Google Scholar 

  6. Longnus SL, Mathys V, Dornbierer M, Dick F, Carrel TP, Tevaearai HT. Heart transplantation with donation after circulatory determination of death. Nat Rev Cardiol. 2014;11:354–63.

    Article  Google Scholar 

  7. Wang B, Patnaik SS, Brazile B, Butler JR, Claude A, Zhang G, et al. Establishing early functional perfusion and structure in tissue engineered cardiac constructs. Crit Rev Biomed Eng. 2015;43:455–71.

    Article  Google Scholar 

  8. Kaiser NJ, Coulombe KLK. Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration. Biomed Mater. 2015;10:034003.

    Article  Google Scholar 

  9. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.

    Article  CAS  Google Scholar 

  10. Engel J, Chiquet M. An overview of extracellular matrix structure and function. The extracellular matrix: an overview. Berlin/Heidelberg: Springer; 2011. p. 1–39.

    Google Scholar 

  11. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13.

    Article  CAS  Google Scholar 

  12. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    Article  CAS  Google Scholar 

  13. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014;802:31–47.

    Google Scholar 

  14. Rienks M, Papageorgiou A-P, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res. 2014;114:872–88.

    Article  CAS  Google Scholar 

  15. Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.

    Article  CAS  Google Scholar 

  16. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15:771–85.

    Article  CAS  Google Scholar 

  17. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    Article  CAS  Google Scholar 

  18. Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24:645–51.

    Article  CAS  Google Scholar 

  19. Bowers SLK, Banerjee I, Baudino TA. The extracellular matrix: at the center of it all. J Mol Cell Cardiol. 2010;48:474–82.

    Article  CAS  Google Scholar 

  20. Rana D, Zreiqat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med. 2017;11:942–65.

    Article  Google Scholar 

  21. Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA. Computational model for cell migration in three-dimensional matrices. Biophys J. 2005;89:1389–97.

    Article  CAS  Google Scholar 

  22. Gaudet C, Marganski WA, Kim S, Brown CT, Gunderia V, Dembo M, et al. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys J. 2003;85:3329–35.

    Article  CAS  Google Scholar 

  23. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  CAS  Google Scholar 

  24. Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, et al. Bioengineering human myocardium on native extracellular matrix. Circ Res. 2016;118:56–72.

    Google Scholar 

  25. Hodgson MJ, Knutson CC, Momtahan N, Cook AD. Extracellular matrix from whole porcine heart Decellularization for cardiac tissue engineering. Methods Mol Biol. 2017; https://doi.org/10.1007/7651_2017_31.

    Google Scholar 

  26. Kitahara H, Yagi H, Tajima K, Okamoto K, Yoshitake A, Aeba R, et al. Heterotopic transplantation of a decellularized and recellularized whole porcine heart. Interact Cardiovasc Thorac Surg. 2016;22:571–9.

    Article  Google Scholar 

  27. Rieder E, Kasimir M-T, Silberhumer G, Seebacher G, Wolner E, Simon P, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg. 2004;127:399–405.

    Article  Google Scholar 

  28. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res. 1994;28:655–66.

    Article  CAS  Google Scholar 

  29. Grauss R, Hazekamp M, Oppenhuizen F, Vanmunsteren C, Gittenbergerdegroot A, Deruiter M. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg. 2005;27:566–71.

    Article  Google Scholar 

  30. Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16:525–32.

    Article  CAS  Google Scholar 

  31. Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, Huelsmann J, et al. The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods. 2011;17:915–26.

    Article  CAS  Google Scholar 

  32. Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor DA. Optimizing Recellularization of whole Decellularized heart extracellular matrix. PLoS One. 2014;9:e90406.

    Article  Google Scholar 

  33. Lee P-F, Chau E, Cabello R, Yeh AT, Sampaio LC, Gobin AS, et al. Inverted orientation improves decellularization of whole porcine hearts. Acta Biomater. 2017;49:181–91.

    Article  Google Scholar 

  34. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    Article  CAS  Google Scholar 

  35. Garreta E, Oria R, Tarantino C, Pla-Roca M, Prado P, Fernández-Avilés F, et al. Tissue engineering by decellularization and 3D bioprinting. Mater Today. 2017;20:166–78.

    Article  CAS  Google Scholar 

  36. Zahmati AHA, Alipoor R, Shahmirzadi AR, Khori V, Abolhasani MM. Chemical Decellularization methods and its effects on extracellular matrix. Int Med Med Investig J. 2017;2:76–83.

    Google Scholar 

  37. Gratzer PF, Harrison RD, Woods T. Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a Decellularized matrix. Tissue Eng. 2006;12:2975.

    Google Scholar 

  38. Cebotari S, Tudorache I, Jaekel T, Hilfiker A, Dorfman S, Ternes W, et al. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs. 2010;34:206–10.

    Article  Google Scholar 

  39. Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34.

    Article  CAS  Google Scholar 

  40. Sarig U, Au-Yeung GCT, Wang Y, Bronshtein T, Dahan N, Boey FYC, et al. Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng Part A. 2012;18:2125–37.

    Article  CAS  Google Scholar 

  41. Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int. 2017;2017:1–13.

    Article  Google Scholar 

  42. University of Arizona College of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Tucson AZ, Khalpey Z. Acellular porcine heart matrices: whole organ decellularization with 3D-Bioscaffold & vascular preservation. Transl Res. 2017; 10.18053/jctres.03.201702.001.

    Google Scholar 

  43. Lynch AP, Ahearne M. Strategies for developing decellularized corneal scaffolds. Exp Eye Res. 2013;108:42–7.

    Article  CAS  Google Scholar 

  44. Freshney RI, Ian Freshney R. Culture of specific cell types. Culture of animal cells; 2005.

    Google Scholar 

  45. Olsen JV, Ong S-E, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics. 2004;3:608–14.

    Article  CAS  Google Scholar 

  46. Merna N, Robertson C, La A, George SC. Optical imaging predicts mechanical properties during decellularization of cardiac tissue. Tissue Eng Part C Methods. 2013;19:802–9.

    Article  CAS  Google Scholar 

  47. Remlinger NT, Wearden PD, Gilbert TW. Procedure for decellularization of porcine heart by retrograde coronary perfusion. J Vis Exp. 2012:e50059.Q4

    Google Scholar 

  48. Methe K, Bäckdahl H, Johansson BR, Nayakawde N, Dellgren G, Sumitran-Holgersson S. An alternative approach to decellularize whole porcine heart. Biores Open Access. 2014;3:327–38.

    Article  CAS  Google Scholar 

  49. Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 2017;67:270. https://doi.org/10.1016/j.actbio.2017.11.046.

    Article  CAS  Google Scholar 

  50. Sawada K, Terada D, Yamaoka T, Kitamura S, Fujisato T. Cell removal with supercritical carbon dioxide for acellular artificial tissue. J Chem Technol Biotechnol. 2008;83:943–9.

    Article  CAS  Google Scholar 

  51. Akhyari P, Oberle F, Huelsmann J, Heid H, Lehr S, Barbian A, et al. Characterization of the epicardial adipose tissue in decellularized human-scaled whole-hearts - implications for the whole-heart tissue engineering. Tissue Eng Part A. 2017; Available: https://www.ncbi.nlm.nih.gov/pubmed/28895502.

    Google Scholar 

  52. Zhou P, Pu WT. Recounting cardiac cellular composition. Circ Res. 2016;118:368–70.

    Article  CAS  Google Scholar 

  53. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118:400–9.

    Google Scholar 

  54. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161:1566–75.

    Article  CAS  Google Scholar 

  55. Garreta E, de Oñate L, Fernández-Santos ME, Oria R, Tarantino C, Climent AM, et al. Myocardial commitment from human pluripotent stem cells: rapid production of human heart grafts. Biomaterials. 2016;98:64–78.

    Article  CAS  Google Scholar 

  56. Hülsmann J, Aubin H, Kranz A, Godehardt E, Munakata H, Kamiya H, et al. A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation. J Artif Organs. 2013;16:294–304.

    Article  Google Scholar 

  57. Ng SLJ, Narayanan K, Gao S, Wan ACA. Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials. 2011;32:7571–80.

    Article  CAS  Google Scholar 

  58. Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 2013;4:2307.

    Google Scholar 

  59. Yasui H, Lee J-K, Yoshida A, Yokoyama T, Nakanishi H, Miwa K, et al. Excitation propagation in three-dimensional engineered hearts using decellularized extracellular matrix. Biomaterials. 2014;35:7839–50.

    Article  CAS  Google Scholar 

  60. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation. 2004;110:962–8.

    Article  Google Scholar 

  61. Weymann A, Patil NP, Sabashnikov A, Jungebluth P, Korkmaz S, Li S, et al. Bioartificial heart: a human-sized porcine model – the way ahead. PLoS One. 2014;9:e111591.

    Article  Google Scholar 

  62. VeDepo MC, Detamore MS, Hopkins RA, Converse GL. Recellularization of decellularized heart valves: progress toward the tissue-engineered heart valve. J Tissue Eng. 2017;8:2041731417726327.

    Article  Google Scholar 

  63. Wang B, Borazjani A, Tahai M, de Jongh Curry AL, Simionescu DT, Guan J, et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A. 2010;94A:1100–10.

    Google Scholar 

  64. Siddiqui RF, Abraham JR, Butany J. Bioprosthetic heart valves: modes of failure. Histopathology. 2009;55:135–44.

    Article  Google Scholar 

  65. Bloomfield P. Choice of heart valve prosthesis. Heart. 2002;87:583–9.

    Article  Google Scholar 

  66. Manji RA, Menkis AH, Ekser B, Cooper DKC. The future of bioprosthetic heart valves. Indian J Med Res. 2012;135:150–1.

    Google Scholar 

  67. Schmidt D, Stock UA, Hoerstrup SP. Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philos Trans R Soc Lond Ser B Biol Sci. 2007;362:1505–12.

    Article  CAS  Google Scholar 

  68. Dohmen PM, da Costa F, Holinski S, Lopes SV, Yoshi S, Reichert LH, et al. Is there a possibility for a glutaraldehyde-free porcine heart valve to grow? Eur Surg Res. 2006;38:54–61.

    Article  CAS  Google Scholar 

  69. Baraki H, Tudorache I, Braun M, Höffler K, Görler A, Lichtenberg A, et al. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials. 2009;30:6240–6.

    Article  CAS  Google Scholar 

  70. Brown JW, Elkins RC, Clarke DR, Tweddell JS, Huddleston CB, Doty JR, et al. Performance of the CryoValve∗ SG human decellularized pulmonary valve in 342 patients relative to the conventional CryoValve at a mean follow-up of four years. J Thorac Cardiovasc Surg. 2010;139:339–48.

    Article  Google Scholar 

  71. Brown JW, Ruzmetov M, Eltayeb O, Rodefeld MD, Turrentine MW. Performance of SynerGraft decellularized pulmonary homograft in patients undergoing a Ross procedure. Ann Thorac Surg. 2011;91:416–22. discussion 422–3

    Article  Google Scholar 

  72. Lim PS, Bierowski N, Garrido M, Watson R, Balaratna A, Paul AV. Repair of left ventricular aneurysm with acellular dermis graft: a case report. J Cardiol Cases. 2012;6:e42–4.

    Article  Google Scholar 

  73. Robinson KA, Li J, Mathison M, Redkar A, Cui J, Chronos NAF, et al. Extracellular matrix scaffold for cardiac repair. Circulation. 2005;112:I135–43.

    Google Scholar 

  74. Svystonyuk D, Turnbull J, Teng G, Belke D, Guzzardi D, Park D, et al. Acellular extracellular matrix SCAFFOLD reprograms cardiac fibroblasts and promotes adaptive cardiac remodeling and repair. Can J Cardiol. 2017;33:S49–50.

    Article  Google Scholar 

  75. Chen WCW, Wang Z, Missinato MA, Park DW, Long DW, Liu H-J, et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv. 2016;2:e1600844.

    Article  Google Scholar 

  76. Baird CW, Myers PO, Piekarski B, Borisuk M, Majeed A, Emani SM, et al. Photo-oxidized bovine pericardium in congenital cardiac surgery: single-Centre experience. Interact Cardiovasc Thorac Surg. 2017;24:240–4.

    Google Scholar 

  77. Woo JS, Fishbein MC, Reemtsen B. Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery. Cardiovasc Pathol. 2016;25:12–7.

    Article  CAS  Google Scholar 

  78. Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 2009;30:5409–16.

    Article  CAS  Google Scholar 

  79. Seif-Naraghi S, Singelyn J, Dequach J, Schup-Magoffin P, Christman K. Fabrication of biologically derived injectable materials for myocardial tissue engineering. J Vis Exp. 2010; https://doi.org/10.3791/2109.

  80. Gaetani R, Ungerleider J, Christman KL. Acellular injectable biomaterials for treating cardiovascular disease. In: Stem cell and gene therapy for cardiovascular disease; 2016. p. 309–25.Q5

    Chapter  Google Scholar 

  81. Wang RM, Christman KL. Decellularized myocardial matrix hydrogels: in basic research and preclinical studies. Adv Drug Deliv Rev. 2016;96:77–82.

    Article  Google Scholar 

  82. Wassenaar JW, Boss GR, Christman KL. Decellularized skeletal muscle as an in vitro model for studying drug-extracellular matrix interactions. Biomaterials. 2015;64:108–14.

    Article  CAS  Google Scholar 

  83. Suarez SL, Rane AA, Muñoz A, Wright AT, Zhang SX, Braden RL, et al. Intramyocardial injection of hydrogel with high interstitial spread does not impact action potential propagation. Acta Biomater. 2015;26:13–22.

    Article  CAS  Google Scholar 

  84. Gaetani R, Yin C, Srikumar N, Braden R, Doevendans PA, Sluijter JPG, et al. Cardiac-derived extracellular matrix enhances cardiogenic properties of human cardiac progenitor cells. Cell Transplant. 2016;25:1653–63.

    Article  Google Scholar 

  85. Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59:751–63.

    Article  CAS  Google Scholar 

  86. Seif-Naraghi SB, Singelyn JM, Salvatore MA, Osborn KG, Wang JJ, Sampat U, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med. 2013;5:173ra25.

    Article  Google Scholar 

  87. Wassenaar JW, Gaetani R, Garcia JJ, Braden RL, Luo CG, Huang D, et al. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J Am Coll Cardiol. 2016;67:1074–86.

    Article  Google Scholar 

  88. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15.

    Article  CAS  Google Scholar 

  89. Stoppel WL, Gao AE, Greaney AM, Partlow BP, Bretherton RC, Kaplan DL, et al. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J Biomed Mater Res A. 2016;104:3058–72.

    Article  CAS  Google Scholar 

  90. Grover GN, Rao N, Christman KL. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering. Nanotechnology. 2014;25:014011.

    Article  Google Scholar 

  91. Williams C, Budina E, Stoppel WL, Sullivan KE, Emani S, Emani SM, et al. Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater. 2015;14:84–95.

    Article  CAS  Google Scholar 

  92. Efraim Y, Sarig H, Cohen Anavy N, Sarig U, de Berardinis E, Chaw S-Y, et al. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction. Acta Biomater. 2017;50:220–33.

    Article  CAS  Google Scholar 

  93. Stoppel WL, Hu D, Domian IJ, Kaplan DL, Black LD 3rd. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomed Mater. 2015;10:034105.

    Article  Google Scholar 

  94. Identifier: NCT02305602; A Phase I, Open-label Study of the Effects of Percutaneous Administration of an Extracellular Matrix Hydrogel, VentriGel, Following Myocardial Infarction. In: Clinicaltrials.gov [Internet]. 2 Dec 2014 [cited Jan 2018]. Available: https://clinicaltrials.gov/ct2/show/NCT02305602.

    Google Scholar 

  95. Ferris CJ, Gilmore KG, Wallace GG, In het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol. 2013;97:4243–58.

    Article  CAS  Google Scholar 

  96. Kim BS, Kim H, Gao G, Jang J, Cho D-W. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication. 2017;9:034104.

    Article  Google Scholar 

  97. Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.

    Article  CAS  Google Scholar 

  98. Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho D-W. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 2016;33:88–95.

    Article  CAS  Google Scholar 

  99. Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Google Scholar 

  100. Sánchez PL, Fernández-Santos ME, Costanza S, Climent AM, Moscoso I, Gonzalez-Nicolas MA, Sanz-Ruiz R, Rodríguez H, Kren SM, Garrido G, Escalante JL, Bermejo J, Elizaga J, Menarguez J, Yotti R, Pérez del Villar C, Espinosa MA, Guillem MS, Willerson JT, Bernad A, Matesanz R, Taylor DA, Fernández-Avilés F. Acellular human heart matrix: A critical step toward whole heart grafts. Biomaterials. 2015;61:279–89.

    Article  Google Scholar 

  101. Ferng AS, Connell AM, Marsh KM, Qu N, Medina AO, Bajaj N, Palomares D, Iwanski J, Tran PL, Lotun K, Johnson K, Khalpey Z. Acellular porcine heart matrices: whole organ decellularization with 3D-bioscaffold & vascular preservation. J Clin Trans Res. 2017;3(2):260–70.

    Google Scholar 

  102. Aubin H, Kranz A, Hülsmann J, Lichtenberg A, Akhyari P. Decellularized whole heart for bioartificial heart. In: Kao R, editor. Cellular Cardiomyoplasty. Methods in molecular biology (methods and protocols), vol. 1036. Totowa: Humana Press; 2013.

    Google Scholar 

  103. Momtahan N, Poornejad N, Struk JA, Castleton AA, Herrod BJ, Vance BR, Eatough JP, Roeder BL, Reynolds PR, Cook AD. Automation of pressure control improves whole porcine heart Decellularization. Tissue Eng Part C Methods. 2015;21(11):1148–61.

    Article  CAS  Google Scholar 

  104. Crawford B, Koshy S, Jhamb G, Woodford C, Thompson CM, Levy AA, Rush JWE, Guillemette J, Lillicrap D, Jervis E. Cardiac decellularization with long-term storage and repopulation with canine peripheral blood progenitor cells. Can J Chem Eng. 2012;90(6):1457–64.

    Article  Google Scholar 

  105. Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater. 2018;68:1–14.

    Article  CAS  Google Scholar 

  106. Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater. 2018;74:74–89. PMID:29702289.

    Article  CAS  Google Scholar 

Download references

Disclosure

Dr. Taylor holds a financial interest in Miromatrix Medical Inc. She is entitled to sales royalty through the University of Minnesota for products related to the research described in this paper. This relationship has been reviewed and managed by the University of Minnesota and Texas Heart Institute in accordance with its conflict of interest policies; the other authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris A. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang-Quan, K.R., Mehta, N.A., Sampaio, L.C., Taylor, D.A. (2018). Whole Cardiac Tissue Bioscaffolds. In: Schmuck, E., Hematti, P., Raval, A. (eds) Cardiac Extracellular Matrix. Advances in Experimental Medicine and Biology, vol 1098. Springer, Cham. https://doi.org/10.1007/978-3-319-97421-7_5

Download citation

Publish with us

Policies and ethics