Advertisement

Improving Vegetable Capsicums for Fruit Yield, Quality, and Tolerance to Biotic and Abiotic Stresses

  • Bala RathinasabapathiEmail author
Chapter
  • 55 Downloads

Abstract

Sweet and pungent peppers (Capsicum spp.) are globally important vegetable and spice commodities as they are valued for their nutritional qualities, antioxidant compounds, flavors, pungency, brilliant colors, and textures. Capsicum. has extraordinary variability in its germplasm both in cultivated and wild species. This review presents an account of research done over several decades in the context of crop improvement. Key developments with reference to linkage analyses, DNA-based markers, the identification of quantitative trait loci for complex traits, transcriptomes of ripening fruit, and genome sequences are summarized. Prospects are excellent for using conventional, biotechnological, and genomic approaches to improve fruit yield, fruit quality, and biotic stress tolerance so that productivity in this specialty crop could be sustained, despite the changing climate. However, more research is needed to build resources to improve peppers for tolerance to abiotic stress factors.

Keywords

Climate change Disease resistance Pepper Pericarp quality Root-knot nematode resistance Stress tolerance Yield 

Notes

Acknowledgements

The author thanks Jingwei Fu (University of Florida) for help with figures. Funding for the author’s research on Capsicum breeding is gratefully acknowledged: grants were from the College of Agriculture and Life Sciences, the US Department of Agriculture’s Agricultural and Marketing Service, and the Florida Department of Agriculture and Consumer Services.

References

  1. Abdel-Aal EM, Akhtar H, Zaheer K, Ali R (2013) Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5:1169–1185PubMedCentralCrossRefPubMedGoogle Scholar
  2. Abraham-Juarez MD, Rocha-Granados MD, Lopez MG, Rivera-Bustamante RF, Ochoa-Alejo N (2008) Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227:681–695CrossRefGoogle Scholar
  3. Ahn S, Badenes-Perez FR, Heckel DG (2011) A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species. J Insect Physiol 57:1212–1219PubMedCrossRefGoogle Scholar
  4. Ahn Y, Manivannan A, Karna S, Jun T, Yang E, Choi S, Kim J, Kim D, Lee E (2018) Whole genome resequencing of Capsicum baccatum and Capsicum annuum to discover single nucleotide polymorphism related to powdery mildew resistance. Sci Rep 8:5188PubMedPubMedCentralCrossRefGoogle Scholar
  5. Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, Rio LA, Palma JM, Corpas FI (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant, Cell Environ 35:281–295CrossRefGoogle Scholar
  6. Aktas H, Abak K, Cakmak I (2006) Genotypic variation in the response of pepper to salinity. Sci Hort 110:260–266CrossRefGoogle Scholar
  7. Aktas H, Abak K, Eker S (2012) Anti-oxidative responses of salt-tolerant and salt-sensitive pepper (Capsicum annuum L.) genotypes grown under salt stress. J HortSci Biotechnol 87:360–366CrossRefGoogle Scholar
  8. Ali AM, Kelly WC (1992) The effects of interfruit competition on the size of sweet pepper (Capsicum annuum L.) fruits. Sci Hort 52:69–76CrossRefGoogle Scholar
  9. Aloni B, Karni L, Rylski I, Cohen Y, Lee Y, Fuchs M, Moreshet S, Yao C (1998) Cuticular cracking in pepper fruit. I. Effects of night temperature and humidity. J Hort Sci Biotechnol 73:743–749CrossRefGoogle Scholar
  10. Aloni B, Peet M, Pharr M, Karni L (2001) The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiol Plant 112:505–512PubMedCrossRefGoogle Scholar
  11. Antonio AS, Wiedemann LSM, Veiga VF Jr (2018) The genus Capsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances 8:25767–25784CrossRefGoogle Scholar
  12. Arce-Rodriguez M, Ochoa-Alejo N (2017) An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiol 174:1359–1370PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ashrafi H, Hill T, Stoffel K, Kozik A, Yao JQ, Chin-Wo SR, Van Deynze A (2012) De Novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs. SSRs and candidate genes. BMC Genomics 13:571PubMedCrossRefGoogle Scholar
  14. Azuma R, Ito N, Nakayama N, Suwa R, Nguyen TN, Larringa-Mayoral JA, Esaka M, Fujiyama H, Saneoka H (2010) Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Sci Hort 125:171–178CrossRefGoogle Scholar
  15. Barbary A, Djian-Caporalino C, Palloix A, Castagnone-Sereno (2015) Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field. Pest Manag Sci 71:1591–1598PubMedCrossRefGoogle Scholar
  16. Baas-Espinola FM, Castro-Concha LA, Vazquez-Flota FA, Miranda-Ham ML (2016) Capsaicin synthesis requires in situ phenylalanine and valine formation in in vitro maintained placentas from Capsicum chinense. Molecules 21:799PubMedCentralCrossRefPubMedGoogle Scholar
  17. Barchi L, Lefebvre V, Sage-Palloix A, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171PubMedCrossRefGoogle Scholar
  18. Barchenger DW, Clark RA, Gniffe PA, Ledesma DR, Lin S, Hanson P, Kumar S (2018) Stability of yield and yield components of pepper (Capsicum annuum) and evaluation of publicly available predictive meteorological data in East and Southeast Asia. HortScience 53:1776–1783CrossRefGoogle Scholar
  19. Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsogon A, Araujo WL (2018) Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Front Plant Sci 9:1689PubMedPubMedCentralCrossRefGoogle Scholar
  20. Belakbir A, Ruiz JM, Romero L (1998) Yield and fruit quality of pepper (Capsicum annuum L.) in response to bioregulators. HortScience 33:85–87CrossRefGoogle Scholar
  21. Ben-Chaim A, Paran I (2000) Genetic analysis of quantitative traits in pepper (Capsicum annuum). J Amer Soc Hort Sci 125:66–70CrossRefGoogle Scholar
  22. Ben-Chaim A, Paran I, Grube RC, Jahn M, Van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028CrossRefGoogle Scholar
  23. Ben-Chaim A, Borovsky Y, De Jong W, Paran I (2003) Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet 106:889–894CrossRefGoogle Scholar
  24. Ben-Chaim A, Borovsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M (2006) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ben-Chaim A, Borovsky Y, Rao G, Zamir D, Paran I (2013) Comparative QTL mapping of fruit size and shape in tomato and pepper. Isr J Plant Sci 54:191–203CrossRefGoogle Scholar
  26. Bhutia ND, Seth T, Shende VD, Dutta S, Chattopadhyay A (2015) Estimation of heterosis, dominance effect and genetic control of fresh fruit yield, quality and leaf curl disease severity traits of pepper (Capsicum annuum L.) Sci Hortic 182:47–55Google Scholar
  27. Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor and Appl Gen 108:79–86CrossRefGoogle Scholar
  28. Bojorquez-Quintal E, Ruiz-Lau N, Velarde-Buendia A, Echevarria-Machado I, Pottosin I, Martinez-Esteves M (2016) Natural variation in primary root growth and K + retention in roots of habanero pepper (Capsicum chinense) under salt stress. Funct Plant Biol 43:1114–1125CrossRefGoogle Scholar
  29. Boswell VR (1937) Improvement and genetics of tomatoes, peppers, eggplant. United States Government Printing Office, Yearbook of Agriculture, Washington, pp 176–206Google Scholar
  30. Canto-Flick A, Balam-Uc E, Bello-Bello JJ, Lecona-Guzman C, Solis-Marroquin D, Aviles-Vinas S, Gomez-Uc E, Lopez-Puc G, Santana-Buzzy N, Iglesias-Andreu LG (2008) Capsaicinoids content in habanero pepper (Capsicum chinense Jacq.): hottest known cultivars. HortScience 43:1344–1349CrossRefGoogle Scholar
  31. Carrizo Garcia C, Barfuss MH, Sehr EM, Barboza GE, Samuel R, Moscone EA, Ehrendorfer F (2016) Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118:35–51PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic 86:247–260CrossRefGoogle Scholar
  33. Chen HC, Klein A, Xiang M, Backhaus RA, Kuntz M (1998) Drought- and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J 14:317–326CrossRefGoogle Scholar
  34. Cheng J, Shen H, Yang X, Yu S, Sun Z, Sun X (2008) Changes in biochemical characteristics related to firmness during fruit development of pepper (Capsicum annuum L.). Eur J Hort Sci 5:155–161Google Scholar
  35. Cheng Q, Li T, Ai Y, Lu Q, Wang Y, Sun L, Shen H (2019) Complementary transcriptomic and proteomic analysis reveals a complex network regulating pollen abortion in GMS (msc-1) pepper (Capsicum annuum L.). Intl J Mol Sci 20:1789PubMedCentralCrossRefGoogle Scholar
  36. Crosby KM (2007) Pepper. In: Prohens-Tomas J, Nuez F (eds) Vegetables II. New York, Springer, pp 221–247Google Scholar
  37. Cruz-Huerta N, Williamson JG, Darnell RL (2011) Low night temperature increases ovary size in sweet pepper cultivars. HortScience 46:396–401CrossRefGoogle Scholar
  38. Deshpande RB (1935) Studies in Indian chillies. 4. Inheritance of pungency in Capsicum annuum. L. Indian J Agri Sci 5:513–516Google Scholar
  39. Dhall RK, Cheema DS (2010) Use of male sterility in hybrid seed production in chilli (Capsicum annuum L.): a review. J Res Punjab Agri Univ 47:46–52Google Scholar
  40. Dijian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I et al (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486CrossRefGoogle Scholar
  41. Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK (2004) Differential expression and in situ localization of a pepper defensing (CaDEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci 166:1297–1305CrossRefGoogle Scholar
  42. Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U (2015) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 6:260PubMedPubMedCentralGoogle Scholar
  43. Eggink PM, Maliepaard C, Tikunov Y, Haanstra JPW, Bovy AG, Visser RGF (2012) A taste of sweet pepper: volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chem 132:302–310CrossRefGoogle Scholar
  44. Elibox W, Meynard CP, Umaharan P (2017) Fruit volume and width at harvest can be used to predict shelf life in pepper (Capsicum chinense Jacq.). Trop Agri (Trinidad) 94:122–131Google Scholar
  45. Erickson AN, Markhart AH (2001) Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. J Am Soc Hortic Sci 126:697–702CrossRefGoogle Scholar
  46. Erickson AN, Markhart AH (2002) Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell Environ 25:123–130CrossRefGoogle Scholar
  47. FAO (2017) www.fao.org/statistics/en. Accessed 1 Jun 2019
  48. Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44PubMedCrossRefGoogle Scholar
  49. Gammoudi N, PedroT San, Ferchichi A, Gisbert C (2018) Improvement of regeneration in pepper: a recalcitrant species. Vitro Cell Dev Biol Plant 54:145–153CrossRefGoogle Scholar
  50. Geleta LF, Labuschangne MT, Viljoen CD (2004) Relationship between heterosis and genetic distance based on morphological traits and AFLP markers in pepper. Plant Breed 123:467–473CrossRefGoogle Scholar
  51. Govindarajan VS, Salzer UJ (1985) Capsicum-production, technology, and quality. Part 1: History, botany, cultivation, and primary processing. Crit Rev Food Sci Nutr 22:109–176PubMedCrossRefGoogle Scholar
  52. Guan DY, Yang F, Xia XQ, Shi YY, Yang S, Cheng W, He SL (2018) CaHSL1 acts as a positive regulator of pepper thermotolerance under high humidity and is transcriptionally modulated by CaWRKY40. Front Plant Sci 9:1802PubMedPubMedCentralCrossRefGoogle Scholar
  53. Guiffrida F, Cassaniti C, Leonardi C (2013) The influence of rootstock on growth and ion concentrations in pepper (Capsicum annuum L.) under saline conditions. J Hort Sci Biotechnol 88:110–116CrossRefGoogle Scholar
  54. Guo M, Liu JH, Lu JP, Zhai YF, Wang H, Gong ZH, Wang SB, Lu MH (2015) Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Front Plant Sci 6:806PubMedPubMedCentralGoogle Scholar
  55. Guo M, Liu JH, Ma X, Zhai YF, Gong ZH, Lu MH (2016) Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress. Plant Sci 252:246–256PubMedCrossRefGoogle Scholar
  56. Guzman I, Hamby S, Romero J, Bosland PW, O’Connell MA (2010) Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Sci 179:49–59PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ha S, Kim J, Park J, Lee S, Cho K (2007) A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J Exp Bot 58:3135–3144PubMedCrossRefGoogle Scholar
  58. Hajihassani A, Rutter WB, Luo X (2019) Resistant pepper carrying N, Me1, and Me3 have different effects on penetration and reproduction of four major Meloidogyne species. J Nematol.  https://doi.org/10.21307/jofnern-2019-020CrossRefPubMedPubMedCentralGoogle Scholar
  59. Han K, Lee HY, Ro N, Hur O, Lee J, Kwon J, Kang BC (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J 16:1546–1558PubMedCentralCrossRefPubMedGoogle Scholar
  60. Heidari-Zefreh AA, Shariatpanahi ME, Mousavi A, Kalatejari S (2019) Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma 256:13–24PubMedCrossRefGoogle Scholar
  61. Herbers K, Conrads-Strauch J, Bonas U (1992) Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356:172–174CrossRefGoogle Scholar
  62. Heuvelink E, Korner O (2001) Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Ann Bot 88:69–74CrossRefGoogle Scholar
  63. Hill TA, Ashrafi H, Reyes-Chin-Wo S, Yao JQ, Stoffel K, Truco MJ, Kozik A, Michelmore RW, Van Deynze A (2013) Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30 K unigene pepper genechip. PLoS ONE 8:e56200PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hornero-MendezD., Guevara R, Minguez-Mosquera IM (2000) Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agri Food Chem 48: 3857–3864Google Scholar
  65. Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306PubMedCrossRefGoogle Scholar
  66. Huberman M, Riov J, Aloni B, Goren R (1997) Role of ethylene biosynthesis and auxin content and transport in high temperature-induced abscission of pepper reproductive organs. J Plant Growth Regul 16:129–135CrossRefGoogle Scholar
  67. Hulse-Kemp A, Maheshwari S., Stoffel K, Hill TA, Jaffe D, Williams SR, Weisenfeld N, Ramakrishnan S, Kumar V, Shah P, Schatz MC, Church DM, Van Deynze A (2018) Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hort Res 5:4Google Scholar
  68. Hurtado-Hernandez H, Smith PG (1985) Inheritance of mature fruit color in Capsicum annuum L. J Hered 76:211–213CrossRefGoogle Scholar
  69. IPPC (2014) Climate change 2014: synthesis report. Contribution of working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. [Core Writing Team, Pachauri RK, Meyer LA (eds)]. Geneva, Switzerland, IPCC, 151 pp. https://www.ipcc.ch/report/ar5/syr/
  70. Isbat M, Zeba N, Kim SR, Hong CB (2009) A BAX inhibitor-1 gene in Capsicum annuum is induced under various abiotic stresses and endows multi-tolerance in transgenic tobacco. J Plant Physiol 166:1685–1693PubMedCrossRefGoogle Scholar
  71. Jang YK, Jung ES, Lee H, Choi D, Lee CH (2015) Metabolomic characterization of hot pepper (Capsicum annuum “CM334”) during fruit development. J Agri Food Chem 63:9452–9460CrossRefGoogle Scholar
  72. Jarret RL, Barboza GE, Batista FRC, Berke T, Chou Y, Hulse-Kemp A, Ochoa-Alejo N, Tripodi P, Veres A, Garcia CC, Csillery G, Huan Y, Kiss E, Kovacs Z, Kondrak M, Arce-Rodriguez ML, Scaldaferro MA, Szoke A (2019) Capsicum—An abbreviated compendium. J Amer Soc Hort Sci 144:3–22CrossRefGoogle Scholar
  73. Jo YD, Ha Y, Lee JH, Park M, Bergsma AC, Choi HI, Goritschnig S, Kloosterman B, van Dijk PJ, Choi D, Kang BC (2016) Fine mapping of Restorer-of-fertility in pepper (Capsicum annuum L.) identified a candidate gene encoding a pentatricopeptide repeat (PPR)-containing protein. Theor Appl Genet 129: 2003-2017PubMedCrossRefGoogle Scholar
  74. Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WML, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jones DA, Takemoto D (2004) Plant innate immunity—direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48–62PubMedCrossRefGoogle Scholar
  76. Kaiser S (1935) The factors governing shape and size in Capsicum fruits; a genetic and developmental analysis. Bull Torr Bot Club 62:433–445CrossRefGoogle Scholar
  77. Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD (2001) An interspecific (Capsicum annuum × C. chinense) F-2 linkage map in pepper using RFLP and AFLP. Theor Appl Genet 102:531–539CrossRefGoogle Scholar
  78. Keyhaninejad N, Curry J, Romero J, O’Connell MA (2014) Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit. Plant Sci 215:59–68PubMedCrossRefGoogle Scholar
  79. Khan Z, Kim SG, Jeon YH, Khan HU, Son SH, Kim YH (2008) A plant growth promoting rhizobacterium Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour Technol 99:3016–3023PubMedCrossRefGoogle Scholar
  80. Kilcrease J, Rodriguez-Uribe L, Richins RD, Victorino AJM, O’Connell MA (2015) Correlations of carotenoid content and transcript abundance for fibrillin and carotonogenic enzymes in Capsicum annum fruit pericarp. Plant Sci 232:57–66PubMedCrossRefGoogle Scholar
  81. Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signaling of the defense response to microbial pathogens. J Exp Bot 65:2295–2306PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kim DS, Kim DH, Yoo JH, Kim BD (2006) Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper (Capsicum annuum L.). Mol Cells 21:135–140PubMedCrossRefGoogle Scholar
  83. Kim DH, Kang JGK, Kim BD (2007) Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.) Plant Mol Biol 63: 519–532PubMedCrossRefGoogle Scholar
  84. Kim S, Park M, Yeom SI, Kim YM Lee JM, Lee, HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee, HY, Kim, SY, Kim, MS, Kang BS, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JS, Kim BD, Kim O, Cohen I, Paran MC, Suh SB, Lee YK, Kim Y, Shin SJ, Noh J, Park YS, Seo SY, Kwon HA, Kim JM, Park HJ, Kim SB, Choi PW, Bosland G, Reeves SH, Jo BW, Lee HT, Cho HS, Choi MS, Lee Y, YuY, Do Choi BS, Park A, van Deynze H, Ashrafi T, Hill WT, Kim HS, Pai HK, Ahn I, Yeam, JJ, Giovannoni JK, Rose I, Sørensen SJ, Lee RW, Kim IY, Choi BS, Choi JS, Lim YH, Lee, Choi, D. (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278PubMedCrossRefGoogle Scholar
  85. Kim S, Park J, Yeom S, Kim YM, Seo E, Kim K, Kim M, Lee J, Cheong K, Shin H, Kim S, Han K, Lee J, Park M, Lee H, Lee H, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee S, Jeon J, Kim H, Choi G, Song H, Lee J, Lee S, Kwon J, Lee H, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang T, Lee YH, Bennetzen JL, Choi D (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease resistance genes by retroduplication. Genome Biol 18:210PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kim N, Kang WH, Lee J, Yeom S (2019) Development of clustered resistance gen analogs-based markers of resistance to Phytophthora capsici in chilli pepper. Biomed Res Int 1093186Google Scholar
  87. Kim SJ, Lee SJ, Kim B-D, Paek K-H (1997) Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Reports 16 (12):825–830PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kissinger M, Tuvia-Alkalai S, Shalom Y, Fallik E, Elkind Y, Jenks MA, Goodwin MS (2005) Characterization of physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage. J Am SocHortic Sci 130:735–741Google Scholar
  89. Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—A review on tissue culture and trasngenesis. Biotechnol Adv 28:35–48PubMedCrossRefGoogle Scholar
  90. Ko MK, Soh H, Kim KM, Kim YS (2007) Stable production of transgenic pepper plants mediated by Agrobacterium tumefaciens. HortScience 42:1425–1430CrossRefGoogle Scholar
  91. Kraft KH, Brown CH, Nabhan GP, Luedeling E, Ruiz JJL, Coppens d’Eeckenbrugge G, Hijmans RJ, Gepts P (2013) Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc Natl Acad Sci USA 111:6165–6170CrossRefGoogle Scholar
  92. Lee SJ, Kim BS (2012) Evaluation of pepper genetic resources (Capsicum spp.) for disease resistance breeding. Kor J Hort Sci Technol 30:185–191Google Scholar
  93. Lee JM, Nahm SH, Kim YM, Kim BD (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet 108:619–627PubMedCrossRefGoogle Scholar
  94. Lee J, Yoon JB, Park HG (2008) A CAPS marker associated with the partial restoration of cytoplasmic male sterility in chili pepper (Capsicum annuum L.). Mol Breed 21:95–104CrossRefGoogle Scholar
  95. Lee J, Park S, Do J, Han JH, Choi D, Yoon JB (2013) Development of a genetic map of chili pepper using single nucleotide polymorphism markers generated from next generation resequencing of parents. Kor J Hort Sci Technol 31:473–482Google Scholar
  96. Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet JC, Daubeze AM, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854PubMedCrossRefGoogle Scholar
  97. Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO (2010) Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:21199–21204PubMedCrossRefGoogle Scholar
  98. Li WP, Cheng JW, Wu ZM, Qin C, Tan S, Tang X, Cui JJ, Zhang L, Hu KL (2015a) An InDel-based linkage map of hot pepper (Capsicum annuum). Mol Breed 35:32PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lightbourn GJ, Stommel JR, Griesbach RJ (2007) Epistatic interactions influencing anthocyanin gene expression in Capsicum annuum. J Am Soc Hort Sci 132:824–829CrossRefGoogle Scholar
  100. Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A (2018) Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Front Chem 6:52PubMedPubMedCentralCrossRefGoogle Scholar
  101. Locascio SJ, Stall WM (1994) Bell pepper yield as influenced by plant spacing and row arrangement. J Am Soc Hort Sci 119:899–902CrossRefGoogle Scholar
  102. Lopez-Marin J, Gonzalez A, Perez-Alfocea F, Egea-Gilabert C, Fernandez JA (2013) Grafting is an efficient alternative to shading screens to alleviate thermal stress in greenhouse-growth sweet pepper. Sci Hort 149:39–46CrossRefGoogle Scholar
  103. Lu F, Cho MC, Park YJ (2012a) Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68. Mol Biol Rep 39:3327–3335PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lu F, Kwon SW, Yoon MY, Kim KT, Cho MC, Yoon M, Park YJ (2012b) SNP marker integration and QTL analysis of 12 agronomic and morphological traits in F8 RILs of pepper (Capsicum annuum L.). Mol Cells 34:25–34PubMedPubMedCentralCrossRefGoogle Scholar
  105. Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang K (2015b) Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53:67–95PubMedCrossRefPubMedCentralGoogle Scholar
  106. Lin W, Hill BD (2008) Neural network modeling to predict weekly yields of sweet peppers in a commercial greenhouse. Can J Plant Sci 88:531–536CrossRefGoogle Scholar
  107. Lin W, Dietmar F (2009) Combined analysis to characterize yield pattern of greenhouse-grown red sweet peppers. HortScience 44:362–365CrossRefGoogle Scholar
  108. Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202PubMedPubMedCentralGoogle Scholar
  109. Maboko MM, Plooy D, Phillipus C (2015) Effect of plant growth regulators on growth, yield, and quality of sweet pepper plants grown hydroponically. HortScience 50:383–386CrossRefGoogle Scholar
  110. Mahasuk P, Struss D, Mongkolporn O (2016) QTLs for resistance to anthracnose identified in two Capsicum sources. Mol Breed 36:10CrossRefGoogle Scholar
  111. Maharijaya A, Vosman B, Pelgrom K, Wahyuni Y, De Vos RCH, Voorrips RE (2019) Genetic variation in phytochemicals in leaves of pepper (Capsicum) in relation to thrips resistance. Arthropod Plant Interact 13:1–9CrossRefGoogle Scholar
  112. Maharijaya A, Vosman B, Steenhuis-Broers G, Pelgrom K, Purwito A, Visser RGF, Voorrips RE (2015) QTL mapping of thrips resistance in pepper. Theor Appl Genet 128:1945–1956PubMedPubMedCentralCrossRefGoogle Scholar
  113. Manoj Kumar A, Reddy KN, Manjulatha M, Arellano ES, Rohini S, Girija G (2011) A rapid, novel and high-throughput identification of putative bell pepper transformants generated through in planta transformation approach. Sci Hort 129:898–903CrossRefGoogle Scholar
  114. Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150:1806–1821PubMedPubMedCentralCrossRefGoogle Scholar
  115. Meena OP, Dhaliwal MS, Jindal SK (2018) Development of cytoplasmic male sterile lines in chilli (Capsicum annuum L.) and their evaluation across multiple environments. Breed Sci 68:404–412PubMedPubMedCentralCrossRefGoogle Scholar
  116. Mercado JA, Reid MS, Valpuesta V, Quesada MA (1997) Metabolic changes and susceptibility to chilling stress in Capsicum annuum plants grown at suboptimal temperature. Aust J Plant Physiol 24:759–767Google Scholar
  117. Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breed 18:57–169CrossRefGoogle Scholar
  118. Moury B, Selassie KG, Marchoux G, Daubeze AM, Palloix A (1998) High temperature effects on hypersensitive resistance to Tomato Spotted wilt Tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). Eur J Plant Pathol 104:489–498CrossRefGoogle Scholar
  119. Naegele RP, Granke LL, Fry J, Hill TA, Ashrafi H, Van Deynze A, Hausbeck MK (2017) Disease resistance to multiple fungal and oomycete pathogens evaluated using a recombinant inbred line population in pepper. Phytopathology 107:1522–1531PubMedCrossRefGoogle Scholar
  120. Nascimento NF, Do Rego ER, Nascimento MF, Bruckner CH, Finger FL, Do Rego MM (2014) Combining ability for yield and fruit quality in the pepper Capsicum annuum. Genet Mol Res 13:3237–3249PubMedCrossRefGoogle Scholar
  121. Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B, Nadimi M, Davidson J, Tonapi K, Yadav L, Malkaram S, Vajja G, Hankins G, Harris R, Park M, Choi D, Stommel J, Reddy UK (2016a) Genome-wide diversity and association mapping for Capsaicinoids and fruit weight in Capsicum annuum. Sci Rep 6:38081PubMedPubMedCentralCrossRefGoogle Scholar
  122. Nimmakayala P, Abburi VL, Saminathan T, Almeida A, Davenport B, Davidson J, Reddy CVCM, Hankins G, Ebert A, Choi D, Stommel J, Reddy UK (2016b) Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms. Front Plant Sci 7:1646PubMedPubMedCentralGoogle Scholar
  123. Niu G, Rodriguez DS, Crosby K, Leskovar D, Jifon J (2010) Rapid screening for relative salt tolerance among chile pepper genotypes. HortScience 45:1192–1195CrossRefGoogle Scholar
  124. Ogawa D, Ishikawa K, Nunomura O, Mii M (2010) Correlation between fruit characters and degree of polysomaty in fruit tissues of Capsicum. J Jpn Soc Hort Sci 79:168–173CrossRefGoogle Scholar
  125. Oliveira Vilarinho LB, Silva DJH, Greene A, Salazar KD, Alves C, Eveleth M, Nichols B, Tehseen S, Khoury JK Jr, Johnson JV, Sargent SA, Rathinasabapathi B (2015) Inheritance of fruit traits in Capsicum annuum: heirloom cultivars as sources of quality parameters relating to pericarp shape, color, thickness and total soluble solids. J Am Soc Hort Sci 140:597–604CrossRefGoogle Scholar
  126. Ortega JL, Rajapakse W, Bagga S, Apodaca K, Lucero Y, Sengupta-Gopalan C (2018) An intragenic approach to confer glyphosate resistance in chile (Capsicum annuum) by introducing an in vitro mutagenized chile EPSPS gene encoding for a glyphosate resistant EPSPS protein. PLoS ONE 13:e0194666PubMedPubMedCentralCrossRefGoogle Scholar
  127. Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ (2012) Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol 159:1713–1729PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ou L, Li D, Lv J, Chen W, Zhang Z, Li X, Yang B, Zhou S, Yang S, Li W, Gao H, Zeng Q, Yu H, Ouyang B, Li F, Liu F, Zheng J, Liu Y, Wang J, Wang B, Dai X, Ma Y, Zou X (2018) Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses. New Phytol 220:360–363PubMedCrossRefGoogle Scholar
  129. Pabon-Mora N, Litt A (2011) Comparative anatomical and developmental analysis of dry and fleshy fruits of Solanaceae. Amer J Bot 98:1415–1436CrossRefGoogle Scholar
  130. Pagamas P, Nawata E (2008) Sensitive stages of fruit and seed development of chili pepper (Capsicum annuum L. var. Shishito) exposed to high-temperature stress. Sci Hortic 117:21–25CrossRefGoogle Scholar
  131. Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199PubMedCrossRefGoogle Scholar
  132. Paran I, Van der Voot JR, Lefebvre V, Jahn M, Landry L, Van Schriek M, Tanyolac B, Caranta C, Ben Chaim A, Livingstone K, Palloix A, Peleman J (2004) An integrated genetic linkage map of pepper (Capsicum spp.). Mol Breed 13:251–261CrossRefGoogle Scholar
  133. Paran I, Van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852PubMedCrossRefGoogle Scholar
  134. Park M, Park J, Kim S, Kwon J, Park H, Bae IH, Yang T, Lee Y, Kang BC, Choi D (2011) Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type LTR-retrotransposons and their derivatives. Plant J 69:1018–1029PubMedCrossRefGoogle Scholar
  135. Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C (2005) Histological characterization of resistance to different root-knot nematodes species related to phenolics accumulation in Capsicum annuum. Phytopathology 95:158–165PubMedCrossRefGoogle Scholar
  136. Penella C, Landi M, Guidi L, Nebauer SG, Pellegrini E, Bautista AS, Remorini D, Nali C, Lopez-Galarza S, Calatayud A (2016) Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. J Plant Physiol 193:1–11PubMedCrossRefGoogle Scholar
  137. Penella C, Nebauer SG, Lopez-Galarza S, Quinones A, Bautista AS, Calatayud A (2017) Grafting pepper onto tolerant rootstocks: an environmental-friendly technique to overcome water and salt stress. Sci Hort 226:33–41CrossRefGoogle Scholar
  138. Peterson PA (1958) Cytoplasmically inherited male sterility in Capsicum. Amer Natur 92:111–119CrossRefGoogle Scholar
  139. Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133CrossRefGoogle Scholar
  140. Pressman E, Moshkovitch H, Rosenfeld K, Shaked R, Gamliel B, Aloni B (1998) Influence of low night temperature on sweet pepper flower quality and the effect of repeated pollinations, with viable pollen, on fruit setting. J Hort Sci BioTechnol 73:131–136CrossRefGoogle Scholar
  141. Qin C, Yu C, Shen Y, Fang X, Chen L, Min UJ, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, Gonzalez-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernandez S, Leyva-Gonzalez MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140PubMedCrossRefGoogle Scholar
  142. Ramalho do Rego E, Monteiro do Rego M, Cruz CD, Finger FL, Dias Casali VW (2011) Phenotypic diversity, correlation and importance of variables for fruit quality and yield traits in Brazilian peppers (Capsicum baccatum). Genet Resour Crop Evol 58:909–918Google Scholar
  143. Rao GU, Ben Chaim A, Borovsky Y, Paran I (2003) Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466PubMedCrossRefGoogle Scholar
  144. Reddy KR, Kakani VG (2007) Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Sci Hort 112:130–135CrossRefGoogle Scholar
  145. Rehrig WZ, Ashrafi H, Hill T, Prince J, Van Deynze A (2014) CaDMR1 cosegregates with QTL Pc5.1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant Genome 7:1–12CrossRefGoogle Scholar
  146. Richins RD, Micheletto S, O’Connell MA (2010) Gene expression profiles unique to chile (Capsicum annuum L.) resistant to Phytophthora root rot. Plant Sci 178 (2):192–201CrossRefGoogle Scholar
  147. Rigano MM, Lionetti V, Raiola A, Bellincampi D, Barone A (2018) Pectic enzymes as potential enhancers of ascorbic acid production through the D-galacturonate pathway in Solanaceae. Plant Sci 266:55–63PubMedCrossRefGoogle Scholar
  148. Rodriguez JM, Berke T, Engle L, Nienhuis J (1999) Variation among and within Capsicum species revealed by RAPD markers. Theor Appl Genet 99:147–156CrossRefGoogle Scholar
  149. Ropokis A, Nitatsi G, Kittas C, Katsoulas N, Savvas D (2019) Effect of temperature and grafting on yield, nutrient uptake, and water use efficiency of a hydroponic sweet pepper crop. Agronomy MDPI 9:110CrossRefGoogle Scholar
  150. Rosado-Souza L, Scossa F, Chaves IS, Kleessen S, Salvador LFD, Milagre JC, Finger F, Bhering LL, Sulpice R, Aranjo WL, Nikoloski Z, Fernie AR, Nunes-Nesi A (2015) Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions. Planta 242:677–691PubMedCrossRefGoogle Scholar
  151. Rubio JS, Garcia-Sanchez F, Martinez RV (2009) Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Sci Hort 119:79–87CrossRefGoogle Scholar
  152. Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56:13–27PubMedCrossRefGoogle Scholar
  153. Sanchez-Bel P, Egea I, Sanchez-Ballesta MT, Martinez-Madrid C, Fernandez-Garcia N, Romojaro F, Olmos E, Estrella E, Bolarin MC, Flores FB (2012) Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach. J Proteom 75:5463–5478CrossRefGoogle Scholar
  154. Sarath Babu B, Pandravada SR, Prasada Rao RDVJ, Anitha K, Chakrabarty SK, Varaprasad KS (2011) Global sources of pepper genetic resources against arthropods, nematodes and pathogens. Crop Protec 30:389–400CrossRefGoogle Scholar
  155. Saure MC (2014) Why calcium deficiency is not the cause of blossom-end rot in tomato and pepper fruit—a reappraisal. Sci Hort 174:151–154CrossRefGoogle Scholar
  156. Seid A, Fininsa C, Mekete T, Decraemer W, Wesemael WML (2015) Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.)—a century-old battle. Nematology 17:995–1009CrossRefGoogle Scholar
  157. Sezen SM, Yazar A, Eker S (2006) Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agri Water Manag 81:115–131CrossRefGoogle Scholar
  158. Seymour GB, Manning K, Eriksson EM, Popovich AH, King GJ (2002) Genetic identification and genomic organization of factors affecting texture. J Exp Bot 53:2065–2071PubMedCrossRefGoogle Scholar
  159. Shin R, Han JH, Lee G, Peak KH (2002) The potential use of a viral coat protein gene as a transgene screening marker and multiple virus resistance of pepper plants coexpressing coat proteins of cucumber mosaic virus and tomato mosaic virus. Transgen Res 11:215–219CrossRefGoogle Scholar
  160. Shifriss C (1997) Male sterility in pepper (Capsicum annuum L.). Euphytica 93:83–88CrossRefGoogle Scholar
  161. Singh Y, Sharma M, Sharma A (2009) Genetic variation, association of characters, and their direct and indirect contributions for improvement in chilli peppers. Intl J Veg Sci 15:340–368CrossRefGoogle Scholar
  162. Sivakumara TN, Chaudhary S, Kamaraju D, Dutta TK, Papolu PK, Banakar P, Sreevastha R, Singh B, Manjaiah KM, Rao U (2017) Host-induced silencing of two pharyngeal gland genes conferred transcriptional alteration of cell wall-modifying enzymes of Meloidogyne incognita vis-à-vis perturbed nematode infectivity in eggplant. Front Plant Sci 8:473Google Scholar
  163. Sood S, Kumar N (2010) Heterotic expression for fruit yield and yield components in intervarietal hybrids of sweet pepper (Capsicum annuum L. var. grossum Sendt.). SABRAO J Breed Genet 42:106–116Google Scholar
  164. Song EG, Ryu KH (2017) Engineering resistance to a resistance-breaking strain of Cucumber mosaic virus in plants utilizing viral dsRNA. Plant Biotechnol Rep 11:429–438CrossRefGoogle Scholar
  165. Stall RE, Jones JB Minsavage GV (2009) Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot. Annu Rev Phytopathol 47:265–284PubMedCrossRefGoogle Scholar
  166. Stommel JR, Lightbourn GJ, Winkel BS, Griesbach RJ (2009) Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J Am Soc Hort Sci 134:244–251CrossRefGoogle Scholar
  167. SWREC (2019) Southwest Florida Research & Education Center, University of Florida. Vegetable Variety Testing Program. Web document: https://swfrec.ifas.ufl.edu/programs/veg-hort/veg-variety/peppers/. Accessed 31 May 2019
  168. Silvar C, Garcia-Gonzalez CA (2016) Deciphering genetic diversity in the origins of pepper (Capsicum spp.) and comparison with worldwide variability. Crop Sci 56:3100–3111CrossRefGoogle Scholar
  169. Sun GS, Dai ZL, Bosland PW, Wang Q, Sun CQ, Zhang ZC, Ma ZH (2016) Characterizing and marker-assisting a novel chili pepper (Capsicum annuum L.) yellow bud mutant with cytoplasmic male sterility. Genet Mol Res 16: gmr16019459Google Scholar
  170. Sun JT, Cheng GX, Huang LJ, Liu S, Ali M, Khan A, Yu QH, Yang SB, Luo DX, Gong ZH (2019) Modified expression of a heat shock protein gene, CaHSP22.0, results in high sensitivity to heat and salt stress in pepper (Capsicum annuum L.). Sci Hort 249:364–373CrossRefGoogle Scholar
  171. Thiele R, Muller-Seitz E, Petz M (2008) Chili pepper fruits: presumed precursors of fatty acids characteristic for capsaicinoids. J Agri Food Chem 56:4218–4224CrossRefGoogle Scholar
  172. Thies JA, Fery RL (1998) Modified expression of the N gene for southern root-knot nematode resistance in pepper at high soil temperatures. J Am Soc Hort Sci 123:1012–1015CrossRefGoogle Scholar
  173. Thies JA, Fery RL (2000) Characterization of resistance conferred by the N gene to Meloidogyne arenaria races 1 and 2, M. hapla, and M. javanica in two sets of isogenic lines of Capsicum annuum. J Am Soc Hort Sci 125:71–75CrossRefGoogle Scholar
  174. Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197PubMedCrossRefGoogle Scholar
  175. Tijskens LMM, Otma EC, Van Kooten O (1994) Photosystem II quantum yield as a measure of radical scavengers in chilling injury in cucumber fruits and bell peppers. Planta 194:478–486CrossRefGoogle Scholar
  176. Tiwari A, Offringa R, Heuvelink E (2012) Auxin-induced fruit set in Capsicum annuum L. requires downstream gibberellin biosynthesis. J Plant Growth Regul 31:570–578CrossRefGoogle Scholar
  177. Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS (2011) Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biol 11:46PubMedPubMedCentralCrossRefGoogle Scholar
  178. USDA (2019) Sweet pepper grades and standards. https://www.ams.usda.gov/grades-standards/sweet-peppers-grades-and-standards. Accessed 7 June 2019
  179. Van Eck J (2018) Genome editing and plant transformation of solanaceous food crops. Curr Opinn BioTechnol 49:35–41CrossRefGoogle Scholar
  180. Velosco J, Prego C, Varela MM, Carballeira R, Bernal A, Merino F, Diaz J (2014) Properties of capsaicinoids for the control of fungi and oomycetes pathogenic to pepper. Plant Biol 16:177–185CrossRefGoogle Scholar
  181. Vicente AR, Pineda C, Lemoine L, Civello PM, Martinez GA, Chaves AR (2005) UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biol Technol 35:69–78CrossRefGoogle Scholar
  182. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dormann P, Kessler F, Brehelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234PubMedCrossRefGoogle Scholar
  183. Visschers IGS, Peters JL, Van de Vondervoort JAH, Hoogveld RHM, Van Dam NM (2019) Thrips resistance screening is coming of age: leaf position and ontogeny are important determinants of leaf-based resistance in pepper. Front Plant Sci 10:510PubMedPubMedCentralCrossRefGoogle Scholar
  184. Wahyuni Y, Ballester A, Sudarmonowati E, Bino RJ, Bovy AG (2011) Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72:1358–1370PubMedCrossRefGoogle Scholar
  185. Wahyuni Y, Ballester A, Tikunov Y, De Vos RC, Pelgrom KTB, Mahrijaya A, Sudarmonowati E, Bino RJ, Bovy AG (2013) Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics 9:130–144PubMedCrossRefGoogle Scholar
  186. Wahyuni Y, Stahl-Hermes V, Ballester A, De Vos RCH, Voorrips RE, Maharijaya A, Moltthoff J, Zamora MV, Sudarmonowati E, Arisi ACM, Bino RJ, Bovy AG (2014) Genetic mapping of semi-polar metabolites in pepper fruits (Capsicum sp.): toward unravelling the molecular regulation of flavonoid quantitative trait loci. Mol Breed 33:503–518PubMedCrossRefGoogle Scholar
  187. Wall MM, Waddell CA, Bosland PW (2001) Variation in β-carotene and total carotenoid content in fruits of Capsicum. HortScience 36:746–749CrossRefGoogle Scholar
  188. Wang P, Lu Q, Ai Y, Wang Y, Li T, Wu L, Liu J, Cheng Q, Sun L, Shen H (2019) Candidate gene selection for cytoplasmic male sterility in pepper (Capsicum annuum L.) through whole mitochondrial genome sequencing. Int J Mol Sci 20:578PubMedCentralCrossRefPubMedGoogle Scholar
  189. Wang D, Bosland PW (2006) The genes of Capsicum. HortScience 41:1169–1187CrossRefGoogle Scholar
  190. Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evoluation in the genus Capsicum. Theor Appl Genet 118:1279–1293PubMedCrossRefGoogle Scholar
  191. Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222PubMedCrossRefPubMedCentralGoogle Scholar
  192. Yi GB, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130PubMedCrossRefPubMedCentralGoogle Scholar
  193. Zhu YX, OuYang WJ, Zhang YF, Chen ZL (1996) Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep 16:71–75PubMedCrossRefPubMedCentralGoogle Scholar
  194. Zhu ZD, Sun BM, Wei JL, Cai W, Huang ZB, Chen CM, Cao BH, Chen GJ, Lei JJ (2019) Construction of a high-density genetic map of an interspecific cross of Capsicum chinense and Capsicum annuum and QTL analysis of floral traits. Sci Rep 1054Google Scholar
  195. Zhuo K, Chen JS, Lin BR, Wang J, Sun FX, Hu LL, Liao JL (2017) A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol Plant Pathol 18:45–54PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations