RNA-Based Assays

  • Umberto Malapelle
  • Pasquale Pisapia
  • Miriam Cieri
  • Francesco Pepe
  • Giancarlo TronconeEmail author


In addition to DNA-based assays, molecular cytopathology includes RNA-based assays. In routine clinical settings, these assays are used for the detection of relevant biomarkers to refine indeterminate morphological diagnosis and to predict treatment response. In this chapter, we will focus on a wide range of RNA-based techniques, including conventional as well as emerging assays, such as quantitative reverse transcriptase-PCR (qRT-PCR), next-generation RNA sequencing, and multiplex digital color-coded barcode technology. We provide a brief overview of the main technical aspects of RNA workflow analysis with a focus on the potential and the challenges of cytological specimens.


RNA cDNA Molecular cytopathology Cytological samples Next-generation technologies RT-PCR NanoString Oncogene Molecular analysis 



Anaplastic lymphoma kinase or ALK receptor tyrosine kinase


v-Raf murine sarcoma oncogene homolog B


Deoxyribonucleic acid


Epidermal growth factor receptor


In vitro diagnostic


Limit of detection


MET proto-oncogene, receptor tyrosine kinase


Next-generation sequencing


Neuregulin 1


Neurotrophic tyrosine kinase, receptor


Proto-oncogene tyrosine-protein kinase receptor ret


ROS proto-oncogene 1, receptor tyrosine kinase


Ribonucleic acid


Reverse transcription-polymerase chain reaction


Turnaround time


  1. 1.
    Malapelle U, Mayo-de-Las-Casas C, Molina-Vila MA, Rosell R, Savic S, Bihl M, et al., Molecular Cytopathology Meeting Group. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: a worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathol. 2017;125:615–26.CrossRefGoogle Scholar
  2. 2.
    Clark DP. Seize the opportunity: underutilization of fine-needle aspiration biopsy to inform targeted cancer therapy decisions. Cancer. 2009;117:289–97.PubMedGoogle Scholar
  3. 3.
    Schmitt FC, Longatto-Filho A, Valent A, et al. Molecular techniques in cytopathology practice. J Clin Pathol. 2008;61:258–67.CrossRefGoogle Scholar
  4. 4.
    Bellevicine C, Sgariglia R, Malapelle U, Vigliar E, Nacchio M, Ciancia G, et al. Young investigator challenge: can the ion AmpliSeq Cancer Hotspot Panel v2 be used for next-generation sequencing of thyroid FNA samples? Cancer Cytopathol. 2016;124:776–84.CrossRefGoogle Scholar
  5. 5.
    Aisner DL, Sams SB. The role of cytology specimens in molecular testing of solid tumors: techniques, limitations, and opportunities. Diagn Cytopathol. 2012;40:511–24.CrossRefGoogle Scholar
  6. 6.
    Weinreb I, Bishop JA, Chiosea SI, Seethala RR, Perez-Ordonez B, Zhang L, et al. Recurrent RET gene rearrangements in intraductal carcinomas of salivary gland. Am J Surg Pathol. 2018;42:442–52.CrossRefGoogle Scholar
  7. 7.
    Dietel M, Bubendorf L, Dingemans AM, Dooms C, Elmberger G, García RC, et al. Diagnostic procedures for non-small-cell lung cancer (NSCLC): recommendations of the European Expert Group. Thorax. 2016;71:177–84.CrossRefGoogle Scholar
  8. 8.
    Pisapia P, Lozano MD, Vigliar E, Bellevicine C, Pepe F, Malapelle U, Troncone G. ALK and ROS1 testing on lung cancer cytologic samples: perspectives. Cancer Cytopathol. 2017;125:817–30.CrossRefGoogle Scholar
  9. 9.
    Aisner DL, Rumery MD, Merrick DT, et al. Do more with less: tips and techniques for maximizing small biopsy and cytology specimens for molecular and ancillary testing: the University of Colorado experience. Arch Pathol Lab Med. 2016;140:1206–20.CrossRefGoogle Scholar
  10. 10.
    Alì G, Bruno R, Savino M, Giannini R, Pelliccioni S, Menghi M, et al. Analysis of fusion genes by nanoString system: a role in lung cytology? Arch Pathol Lab Med. 2018;142:480–9.CrossRefGoogle Scholar
  11. 11.
    Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. Biochim Biophys Acta. 2009;1792:14–26.CrossRefGoogle Scholar
  12. 12.
    Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34:721–30.CrossRefGoogle Scholar
  13. 13.
    Fink L, Seeger W, Ermert L, Hänze J, Stahl U, Grimminger F, et al. Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med. 1998;4:1329–33.CrossRefGoogle Scholar
  14. 14.
    Malapelle U, Mayo de-Las-Casas C, Rocco D, Garzon M, Pisapia P, Jordana-Ariza N, et al. Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br J Cancer. 2017;116:802–10.CrossRefGoogle Scholar
  15. 15.
    Sgariglia R, Pisapia P, Nacchio M, De Luca C, Pepe F, Russo M, et al. Multiplex digital colour-coded barcode technology on RNA extracted from routine cytological samples of patients with non-small cell lung cancer: pilot study. J Clin Pathol. 2017;70:803–6.CrossRefGoogle Scholar
  16. 16.
    Bellevicine C, Malapelle U, Vigliar E, Pisapia P, Vita G, Troncone G. How to prepare cytological samples for molecular testing. J Clin Pathol. 2017;70:819–26.CrossRefGoogle Scholar
  17. 17.
    Bridge JA. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: pre-analytic and analytic factors. Cancer. 2017;125:11–9.Google Scholar
  18. 18.
    Dejmek A, Zendehrokh N, Tomaszewska M, Edsjö A. Preparation of DNA from cytological material: effects of fixation, staining, and mounting medium on DNA yield and quality. Cancer Cytopathol. 2013;121:344–53.CrossRefGoogle Scholar
  19. 19.
    Ladd AC, O’Sullivan-Mejia E, Lea T, Perry J, Dumur CI, Dragoescu E, et al. Preservation of fine-needle aspiration specimens for future use inRNA-based molecular testing. Cancer Cytopathol. 2011;119:102–10.CrossRefGoogle Scholar
  20. 20.
    Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E, et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 2005;33:e56.CrossRefGoogle Scholar
  21. 21.
    Skrypina NA, Timofeeva AV, Khaspekov GL, Savochkina LP, Beabealashvilli RS. Total RNA suitable for molecular biology analysis. J Biotechnol. 2003;105:1–9.CrossRefGoogle Scholar
  22. 22.
    Wilkes TM, Devonshire AS, Ellison SL, Foy CA. Evaluation of a novel approach for the measurement of RNA quality. BMC Res Notes. 2010;3:89.CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Ni M, Liu N, Zhou Y, Chen X, Ding YB, et al. Expression and function of Pdcd4 in mouse endometrium during early pregnancy. Reproduction. 2018. pii: REP-17-0787.Google Scholar
  24. 24.
    Attri KS, Mehla K, Shukla SK, Singh PK. Microscale gene expression analysis of tumor-associated macrophages. Sci Rep. 2018;8:2408.CrossRefGoogle Scholar
  25. 25.
    Wang J, Yao A, Wang JY, Sung CC, Fink LM, Hardin JW, Hauer-Jensen M. cDNA cloning and sequencing, gene expression, and immunolocalization of thrombomodulin in the Sprague-Dawley rat. DNA Res. 1999;6:57–62.CrossRefGoogle Scholar
  26. 26.
    Ruiz-Villalba A, van Pelt-Verkuil E, Gunst QD, Ruijter JM, van den Hoff MJ. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR). Biomol Detect Quantif. 2017;14:7–18.CrossRefGoogle Scholar
  27. 27.
    Reguart N, Teixidó C, Giménez-Capitán A, Paré L, Galván P, Viteri S, et al. Identification of ALK, ROS1, and RET fusions by a multiplexed mRNA-based assay in formalin-fixed, paraffin-embedded samples from advanced non-small-cell lung Cancer patients. Clin Chem. 2017;63:751–60.CrossRefGoogle Scholar
  28. 28.
    Oktay MH, Adler E, Hakima L, Grunblatt E, Pieri E, Seymour A, et al. The application of molecular diagnostics to stained cytology smears. J Mol Diagn. 2016;18:407–15.CrossRefGoogle Scholar
  29. 29.
    Mitiushkina NV, Iyevleva AG, Poltoratskiy AN, Ivantsov AO, Togo AV, Polyakov IS, et al. Detection of EGFR mutations and EML4-ALK rearrangements in lung adenocarcinomas using archived cytological slides. Cancer Cytopathol. 2013;121:370–6.CrossRefGoogle Scholar
  30. 30.
    Ferraz C, Rehfeld C, Krogdahl A, Precht Jensen EM, Bösenberg E, Narz F, et al. Detection of PAX8/PPARG and RET/PTC rearrangements is feasible in routine air-dried fine needle aspiration smears. Thyroid. 2012;22:1025–30.CrossRefGoogle Scholar
  31. 31.
    Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn. 2017;19:341–65.CrossRefGoogle Scholar
  32. 32.
    Clinical and Laboratory Standards Institute. Nucleic acid sequencing methods in diagnostic laboratory medicine; approved guideline. (CLSI document MM09-A2). 2nd ed. Wayne: Clinical and Laboratory Standards Institute; 2014.Google Scholar
  33. 33.
    Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.CrossRefGoogle Scholar
  34. 34.
    Arvidsson G, Henriksson J, Sander B, Wright AP. Mixed-species RNAseq analysis of human lymphoma cells adhering to mouse stromal cells identifies a core gene set that is also differentially expressed in the lymph node microenvironment of mantle cell lymphoma and chronic lymphocytic leukemia patients. Haematologica. 2018;103:666–78.CrossRefGoogle Scholar
  35. 35.
    Hynes SO, Pang B, James JA, et al. Tissue-based next generation sequencing: application in a universal healthcare system. Br J Cancer. 2017;116:553–60.CrossRefGoogle Scholar
  36. 36.
    Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P. Library construction for next-generation sequencing: overviews and challenges. Biotechniques. 2014;56:61–4, 66, 68, passim.CrossRefGoogle Scholar
  37. 37.
    Etheridge A, Wang K, Baxter D, Galas D. Preparation of small RNA NGS libraries from biofluids. Methods Mol Biol. 2018;1740:163–75.CrossRefGoogle Scholar
  38. 38.
    Velizheva NP, Rechsteiner MP, Wong CE, Zhong Q, Rössle M, Bode B, et al. Cytology smears as excellent starting material for next-generation sequencing-based molecular testing of patients with adenocarcinoma of the lung. Cancer Cytopathol. 2017;125:30–40.CrossRefGoogle Scholar
  39. 39.
    Guseva NV, Jaber O, Stence AA, Sompallae K, Bashir A, Sompallae R, et al. Simultaneous detection of single-nucleotide variant, deletion/insertion, and fusion in lung and thyroid carcinoma using cytology specimen and an RNA-based next-generation sequencing assay. Cancer Cytopathol. 2018;126:158–69.CrossRefGoogle Scholar
  40. 40.
    Troncone G. All-in-one: the dream and reality of molecular cytopathology testing on routine lung cancer smears. Cancer Cytopathol. 2018;126:155–7.CrossRefGoogle Scholar
  41. 41.
    Kim MH, Seo HJ, Joung JG, Kim JH. Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data. BMC Bioinformatics. 2011;12 Suppl 13:S8.CrossRefGoogle Scholar
  42. 42.
    Lira ME, Choi YL, Lim SM, Deng S, Huang D, Ozeck M, et al. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. J Mol Diagn. 2014;16:229–43.CrossRefGoogle Scholar
  43. 43.
    Lira ME, Kim TM, Huang D, Deng S, Koh Y, Jang B, et al. Multiplexed gene expression and fusion transcript analysis to detect ALK fusions in lung cancer. J Mol Diagn. 2013;15:51–61.CrossRefGoogle Scholar
  44. 44.
    Sunami K, Furuta K, Tsuta K, Sasada S, Izumo T, Nakaoku T, et al. Multiplex diagnosis of oncogenic fusion and MET exon skipping by molecular counting using formalin-fixed paraffin embedded lung adenocarcinoma tissues. J Thorac Oncol. 2016;11:203–12.CrossRefGoogle Scholar
  45. 45.
    Zhao W, Choi YL, Song JY, Zhu Y, Xu Q, Zhang F, et al. ALK, ROS1 and RET rearrangements in lung squamous cell carcinoma are very rare. Lung Cancer. 2016;94:22–7.CrossRefGoogle Scholar
  46. 46.
    Fang DD, Zhang B, Gu Q, Lira M, Xu Q, Sun H, et al. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol. 2014;9:285–94.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Umberto Malapelle
    • 1
  • Pasquale Pisapia
    • 1
  • Miriam Cieri
    • 1
  • Francesco Pepe
    • 1
  • Giancarlo Troncone
    • 1
    Email author
  1. 1.Department of Public HealthUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations