Advertisement

Research Perspectives for Neuroimaging of Schizophrenia Spectrum Disorders

  • Eleanor Scutt
  • Stefan Borgwardt
  • Paolo Fusar-PoliEmail author
Chapter

Abstract

Current evidence from neuroimaging studies investigating schizophrenia spectrum disorders (SSDs) has suggested alterations in grey and white matter [1–3], ventricular volume [4, 5], structural and functional connectivity [6, 7] and neurotransmitter levels [8]. Some of these findings have been consistent, for example, in the case of reduced cortical grey matter [1] and increased lateral ventricle volume [4]; however, others have been less clear with findings of both increased and decreased connectivity across several brain regions [6, 7]. Also of interest are regions that have consistently been associated with structural and neurochemical abnormalities, such as the striatum [8, 9] and the growing area of the role of the immune system in the pathology of SSDs [10].

Abbreviations

CHR

Clinical high risk

DTI

Diffusion tensor imaging

EEG

Electroencephalography

FA

Fractional anisotropy

FEP

First-episode psychosis

fMRI

Functional magnetic resonance imaging

MRI

Magnetic resonance imaging

PET

Positron emission tomography

SSDs

Schizophrenia spectrum disorders

SVM

Support vector modelling

References

  1. 1.
    Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry. 2008;165(8):1015–23.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 2017;3:15.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Canu E, Agosta F, Filippi M. A selective review of structural connectivity abnormalities of schizophrenic patients at different stages of the disease. Schizophr Res. 2015;161(1):19–28.PubMedCrossRefGoogle Scholar
  4. 4.
    van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21(4):585.PubMedCrossRefGoogle Scholar
  5. 5.
    Horga G, Bernacer J, Dusi N, Entis J, Chu K, Hazlett EA, et al. Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2011;261(7):467–76.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A. Dysconnectivity in schizophrenia: where are we now? Neurosci Biobehav Rev. 2011;35(5):1110–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Fornito A, Bullmore ET. Reconciling abnormalities of brain network structure and function in schizophrenia. Curr Opin Neurobiol. 2015;30:44–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull. 2009;35(3):549–62.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sarpal DK, Robinson DG, Lencz T, Argyelan M, Ikuta T, Karlsgodt K, et al. Antipsychotic treatment and functional connectivity of the striatum in first-episode schizophrenia. JAMA Psychiatry. 2015;72(1):5–13.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, et al. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol. 2016;173(4):666–80.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, et al. Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res. 2003;60(1):21–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Sarpal DK, Robinson DG, Fales C, Lencz T, Argyelan M, Karlsgodt KH, et al. Relationship between duration of untreated psychosis and intrinsic corticostriatal connectivity in patients with early phase schizophrenia. Neuropsychopharmacology. 2017;42(11):2214–21.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Altamura AC, Delvecchio G, Paletta S, Di Pace C, Reggiori A, Fiorentini A, et al. Gray matter volumes may predict the clinical response to paliperidone palmitate long-acting in acute psychosis: a pilot longitudinal neuroimaging study. Psychiatry Res. 2017;261:80–4.CrossRefGoogle Scholar
  14. 14.
    Cuesta MJ, Lecumberri P, Cabada T, Moreno-Izco L, Ribeiro M, López-Ilundain JM, et al. Basal ganglia and ventricle volume in first-episode psychosis. A family and clinical study. Psychiatry Res. 2017;269:90–6.CrossRefGoogle Scholar
  15. 15.
    Chung Y, Haut KM, He G, van Erp TG, McEwen S, Addington J, et al. Ventricular enlargement and progressive reduction of cortical gray matter are linked in prodromal youth who develop psychosis. Schizophr Res. 2017;189:169.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Berger GE, Bartholomeusz CF, Wood SJ, Ang A, Phillips LJ, Proffitt T, et al. Ventricular volumes across stages of schizophrenia and other psychoses. Aust N Z J Psychiatry. 2017;51(10):1041–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Konishi J, Del Re EC, Bouix S, Blokland GAM, Mesholam-Gately R, Woodberry K, et al. Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study. Brain Imaging Behav. 2017.  https://doi.org/10.1007/s11682-017-9758-z.CrossRefGoogle Scholar
  18. 18.
    Bousman CA, Cropley V, Klauser P, Hess JL, Pereira A, Idrizi R, et al. Neuregulin-1 (NRG1) polymorphisms linked with psychosis transition are associated with enlarged lateral ventricles and white matter disruption in schizophrenia. Psychol Med. 2018;48:801–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Forns-Nadal M, Bergé D, Sem F, Mané A, Igual L, Guinart D, et al. Increased nucleus accumbens volume in first-episode psychosis. Psychiatry Res. 2017;263:57–60.CrossRefGoogle Scholar
  20. 20.
    Dempster K, Norman R, Théberge J, Densmore M, Schaefer B, Williamson P. Cognitive performance is associated with gray matter decline in first-episode psychosis. Psychiatry Res. 2017;264:46–51.CrossRefGoogle Scholar
  21. 21.
    Rhindress K, Robinson DG, Gallego JA, Wellington R, Malhotra AK, Szeszko PR. Hippocampal subregion volume changes associated with antipsychotic treatment in first-episode psychosis. Psychol Med. 2017;47(10):1706–18.PubMedCrossRefGoogle Scholar
  22. 22.
    Knöchel C, Kniep J, Cooper JD, Stäblein M, Wenzler S, Sarlon J, et al. Altered apolipoprotein C expression in association with cognition impairments and hippocampus volume in schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2017;267(3):199–212.PubMedCrossRefGoogle Scholar
  23. 23.
    Landin-Romero R, Canales-Rodríguez EJ, Kumfor F, Moreno-Alcázar A, Madre M, Maristany T, et al. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder. Aust N Z J Psychiatry. 2017;51(1):42–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Buchy L, Makowski C, Malla A, Joober R, Lepage M. Longitudinal trajectory of clinical insight and covariation with cortical thickness in first-episode psychosis. J Psychiatr Res. 2017;86:46–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Picchioni MM, Rijsdijk F, Toulopoulou T, Chaddock C, Cole JH, Ettinger U, et al. Familial and environmental influences on brain volumes in twins with schizophrenia. J Psychiatry Neurosci. 2017;42(2):122–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Mørch-Johnsen L, Nesvåg R, Jørgensen KN, Lange EH, Hartberg CB, Haukvik UK, et al. Auditory cortex characteristics in schizophrenia: associations with auditory hallucinations. Schizophr Bull. 2017;43(1):75–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Kuang C, Buchy L, Barbato M, Makowski C, MacMaster FP, Bray S, et al. A pilot study of cognitive insight and structural covariance in first-episode psychosis. Schizophr Res. 2017;179:91–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Castro-de-Araujo LFS, Kanaan RAA. First episode psychosis moderates the effect of gray matter volume on cognition. Psychiatry Res. 2017;266:108–13.CrossRefGoogle Scholar
  29. 29.
    Squarcina L, Castellani U, Bellani M, Perlini C, Lasalvia A, Dusi N, et al. Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques. NeuroImage. 2017;145(Pt B):238–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Nieuwenhuis M, Schnack HG, van Haren NE, Lappin J, Morgan C, Reinders AA, et al. Multi-center MRI prediction models: predicting sex and illness course in first episode psychosis patients. NeuroImage. 2017;145(Pt B):246–53.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cropley VL, Klauser P, Lenroot RK, Bruggemann J, Sundram S, Bousman C, et al. Accelerated gray and white matter deterioration with age in schizophrenia. Am J Psychiatry. 2017;174(3):286–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Koutsouleris N, Wobrock T, Guse B, Langguth B, Landgrebe M, Eichhammer P, et al. Predicting response to repetitive transcranial magnetic stimulation in patients with schizophrenia using structural magnetic resonance imaging: a multisite machine learning analysis. Schizophr Bull. 2017.  https://doi.org/10.1093/schbul/sbx114.CrossRefGoogle Scholar
  33. 33.
    Zhou Y, Liu J, Driesen N, Womer F, Chen K, Wang Y, et al. White matter integrity in genetic high-risk individuals and first-episode schizophrenia patients: similarities and disassociations. Biomed Res Int. 2017;2017:3107845.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Mallas E, Carletti F, Chaddock CA, Shergill S, Woolley J, Picchioni MM, et al. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder(1). Genes Brain Behav. 2017;16(4):479–88.PubMedCrossRefGoogle Scholar
  35. 35.
    Serpa MH, Doshi J, Erus G, Chaim-Avancini TM, Cavallet M, van de Bilt MT, et al. State-dependent microstructural white matter changes in drug-naïve patients with first-episode psychosis. Psychol Med. 2017;47(15):2613–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Klauser P, Baker ST, Cropley VL, Bousman C, Fornito A, Cocchi L, et al. White matter disruptions in schizophrenia are spatially widespread and topologically converge on brain network hubs. Schizophr Bull. 2017;43(2):425–35.PubMedGoogle Scholar
  37. 37.
    Rae CL, Davies G, Garfinkel SN, Gabel MC, Dowell NG, Cercignani M, et al. Deficits in neurite density underlie white matter structure abnormalities in first-episode psychosis. Biol Psychiatry. 2017;82(10):716–25.PubMedCrossRefGoogle Scholar
  38. 38.
    Ren HY, Wang Q, Lei W, Zhang CC, Li YF, Li XJ, et al. The common variants implicated in microstructural abnormality of first episode and drug-naïve patients with schizophrenia. Sci Rep. 2017;7(1):11750.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Crossley NA, Marques TR, Taylor H, Chaddock C, Dell’Acqua F, Reinders AA, et al. Connectomic correlates of response to treatment in first-episode psychosis. Brain. 2017;140(2):487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Schmidt A, Crossley NA, Harrisberger F, Smieskova R, Lenz C, Riecher-Rössler A, et al. Structural network disorganization in subjects at clinical high risk for psychosis. Schizophr Bull. 2017;43(3):583–91.Google Scholar
  41. 41.
    Li P, Jing RX, Zhao RJ, Ding ZB, Shi L, Sun HQ, et al. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study. NPJ Schizophr. 2017;3(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Peters H, Riedl V, Manoliu A, Scherr M, Schwerthöffer D, Zimmer C, et al. Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode. Br J Psychiatry. 2017;210(1):75–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu S, Wang H, Chen C, Zou J, Huang H, Li P, et al. Task performance modulates functional connectivity involving the dorsolateral prefrontal cortex in patients with schizophrenia. Front Psychol. 2017;8:56.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Xu Y, Qin W, Zhuo C, Xu L, Zhu J, Liu X, et al. Selective functional disconnection of the orbitofrontal subregions in schizophrenia. Psychol Med. 2017;47(9):1637–46.PubMedCrossRefGoogle Scholar
  45. 45.
    Anderson EJ, Tibber MS, Schwarzkopf DS, Shergill SS, Fernandez-Egea E, Rees G, et al. Visual population receptive fields in people with schizophrenia have reduced inhibitory surrounds. J Neurosci. 2017;37(6):1546–56.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gong Q, Hu X, Pettersson-Yeo W, Xu X, Lui S, Crossley N, et al. Network-level dysconnectivity in drug-naïve first-episode psychosis: dissociating transdiagnostic and diagnosis-specific alterations. Neuropsychopharmacology. 2017;42(4):933–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Schmack K, Rothkirch M, Priller J, Sterzer P. Enhanced predictive signalling in schizophrenia. Hum Brain Mapp. 2017;38(4):1767–79.PubMedCrossRefGoogle Scholar
  48. 48.
    Braeutigam S, Dima D, Frangou S, James A. Dissociable auditory mismatch response and connectivity patterns in adolescents with schizophrenia and adolescents with bipolar disorder with psychosis: a magnetoencephalography study. Schizophr Res. 2018;193:313.PubMedCrossRefGoogle Scholar
  49. 49.
    Mason L, Peters E, Williams SC, Kumari V. Brain connectivity changes occurring following cognitive behavioural therapy for psychosis predict long-term recovery. Transl Psychiatry. 2017;7(8):e1209.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Koike S, Satomura Y, Kawasaki S, Nishimura Y, Kinoshita A, Sakurada H, et al. Application of functional near infrared spectroscopy as supplementary examination for diagnosis of clinical stages of psychosis spectrum. Psychiatry Clin Neurosci. 2017;71:794.PubMedCrossRefGoogle Scholar
  51. 51.
    Rikandi E, Pamilo S, Mäntylä T, Suvisaari J, Kieseppä T, Hari R, et al. Precuneus functioning differentiates first-episode psychosis patients during the fantasy movie Alice in Wonderland. Psychol Med. 2017;47(3):495–506.PubMedCrossRefGoogle Scholar
  52. 52.
    Spilka MJ, Goghari VM. Similar patterns of brain activation abnormalities during emotional and non-emotional judgments of faces in a schizophrenia family study. Neuropsychologia. 2017;96:164–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Falkenberg I, Valli I, Raffin M, Broome MR, Fusar-Poli P, Matthiasson P, et al. Pattern of activation during delayed matching to sample task predicts functional outcome in people at ultra high risk for psychosis. Schizophr Res. 2017;181:86–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Martinelli C, Rigoli F, Shergill SS. Aberrant force processing in schizophrenia. Schizophr Bull. 2017;43(2):417–24.PubMedGoogle Scholar
  55. 55.
    Hager B, Yang AC, Brady R, Meda S, Clementz B, Pearlson GD, et al. Neural complexity as a potential translational biomarker for psychosis. J Affect Disord. 2017;216:89–99.PubMedCrossRefGoogle Scholar
  56. 56.
    Fornito A, Yücel M, Patti J, Wood SJ, Pantelis C. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res. 2009;108(1-3):104–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull. 2017;33(1):73–84.PubMedCrossRefGoogle Scholar
  58. 58.
    Kindler J, Schultze-Lutter F, Hauf M, Dierks T, Federspiel A, Walther S, et al. Increased striatal and reduced prefrontal cerebral blood flow in clinical high risk for psychosis. Schizophr Bull. 2018;44:182.PubMedCrossRefGoogle Scholar
  59. 59.
    Di Biase MA, Zalesky A, O’keefe G, Laskaris L, Baune BT, Weickert CS, et al. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry. 2017;7(8):e1225.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Selvaraj S, Bloomfield PS, Cao B, Veronese M, Turkheimer F, Howes OD. Brain TSPO imaging and gray matter volume in schizophrenia patients and in people at ultra high risk of psychosis: an [(11)C]PBR28 study. Schizophr Res. 2018;195:206.PubMedCrossRefGoogle Scholar
  61. 61.
    Hafizi S, Da Silva T, Gerritsen C, Kiang M, Bagby RM, Prce I, et al. Imaging microglial activation in individuals at clinical high risk for psychosis: an in vivo PET study with [(18)F]FEPPA. Neuropsychopharmacology. 2017;42:2474.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Artiges E, Leroy C, Dubol M, Prat M, Pepin A, Mabondo A, et al. Striatal and extrastriatal dopamine transporter availability in schizophrenia and its clinical correlates: a voxel-based and high-resolution PET study. Schizophr Bull. 2017;43(5):1134–42.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Solé-Padullés C, Castro-Fornieles J, de la Serna E, Sánchez-Gistau V, Romero S, Puig O, et al. Intrinsic functional connectivity of fronto-temporal networks in adolescents with early psychosis. Eur Child Adolesc Psychiatry. 2017;26(6):669–79.CrossRefGoogle Scholar
  64. 64.
    Kim M, Cho KI, Yoon YB, Lee TY, Kwon JS. Aberrant temporal behavior of mismatch negativity generators in schizophrenia patients and subjects at clinical high risk for psychosis. Clin Neurophysiol. 2017;128(2):331–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Ranlund S, Calafato S, Thygesen JH, Lin K, Cahn W, Crespo-Facorro B, et al. A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. Am J Med Genet B Neuropsychiatr Genet. 2018;177:21.PubMedCrossRefGoogle Scholar
  66. 66.
    Amann BL, Canales-Rodríguez EJ, Madre M, Radua J, Monte G, Alonso-Lana S, et al. Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder. Acta Psychiatr Scand. 2016;133(1):23–33.PubMedCrossRefGoogle Scholar
  67. 67.
    Dazzan P, Soulsby B, Mechelli A, Wood SJ, Velakoulis D, Phillips LJ, et al. Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: an MRI study in subjects at ultrahigh risk of psychosis. Schizophr Bull. 2012;38(5):1083–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TG, et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry. 2015;77(2):147–57.PubMedCrossRefGoogle Scholar
  69. 69.
    Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry. 2006;188:510–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Chan RC, Di X, McAlonan GM, Gong QY. Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr Bull. 2011;37(1):177–88.PubMedCrossRefGoogle Scholar
  71. 71.
    Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry. 2011;70(1):88–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Zipursky RB, Reilly TJ, Murray RM. The myth of schizophrenia as a progressive brain disease. Schizophr Bull. 2013;39(6):1363–72.PubMedCrossRefGoogle Scholar
  73. 73.
    Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev. 2013;37(8):1680–91.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Vita A, De Peri L, Deste G, Barlati S, Sacchetti E. The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biol Psychiatry. 2015;78(6):403–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Lener MS, Wong E, Tang CY, Byne W, Goldstein KE, Blair NJ, et al. White matter abnormalities in schizophrenia and schizotypal personality disorder. Schizophr Bull. 2015;41(1):300–10.PubMedCrossRefGoogle Scholar
  76. 76.
    Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. Functional connectivity and brain networks in schizophrenia. J Neurosci. 2010;30(28):9477–87.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci. 2011;31(44):15775–86.PubMedCrossRefGoogle Scholar
  78. 78.
    Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A. 2009;106(4):1279–84.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Fornito A, Harrison BJ, Goodby E, Dean A, Ooi C, Nathan PJ, et al. Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry. 2013;70(11):1143–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Dandash O, Fornito A, Lee J, Keefe RS, Chee MW, Adcock RA, et al. Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophr Bull. 2014;40(4):904–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, et al. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24(12):3116–30.PubMedCrossRefGoogle Scholar
  82. 82.
    Hoffman RE, Fernandez T, Pittman B, Hampson M. Elevated functional connectivity along a corticostriatal loop and the mechanism of auditory/verbal hallucinations in patients with schizophrenia. Biol Psychiatry. 2011;69(5):407–14.PubMedCrossRefGoogle Scholar
  83. 83.
    Millan MJ, Andrieux A, Bartzokis G, Cadenhead K, Dazzan P, Fusar-Poli P, et al. Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discov. 2016;15(7):485–515.PubMedCrossRefGoogle Scholar
  84. 84.
    Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, et al. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69(3):220–9.CrossRefGoogle Scholar
  85. 85.
    Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T, Scheuerecker J, et al. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry. 2009;66(7):700–12.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Koutsouleris N, Borgwardt S, Meisenzahl EM, Bottlender R, Möller HJ, Riecher-Rössler A. Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study. Schizophr Bull. 2012;38(6):1234–46.PubMedCrossRefGoogle Scholar
  87. 87.
    Koutsouleris N, Riecher-Rössler A, Meisenzahl EM, Smieskova R, Studerus E, Kambeitz-Ilankovic L, et al. Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Schizophr Bull. 2015;41(2):471–82.PubMedCrossRefGoogle Scholar
  88. 88.
    McGuire P, Sato JR, Mechelli A, Jackowski A, Bressan RA, Zugman A. Can neuroimaging be used to predict the onset of psychosis? Lancet Psychiatry. 2015;2(12):1117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gifford G, Crossley N, Fusar-Poli P, Schnack HG, Kahn RS, Koutsouleris N, et al. Using neuroimaging to help predict the onset of psychosis. NeuroImage. 2017;145(Pt B):209–17.PubMedCrossRefGoogle Scholar
  90. 90.
    Kapur S, Seeman P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J Psychiatry Neurosci. 2000;25(2):161–6.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Tamminga CA. Treatment mechanisms: traditional and new antipsychotic drugs. Dialogues Clin Neurosci. 2000;2(3):281–6.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Navari S, Dazzan P. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med. 2009;39(11):1763–77.PubMedCrossRefGoogle Scholar
  93. 93.
    Abbott CC, Jaramillo A, Wilcox CE, Hamilton DA. Antipsychotic drug effects in schizophrenia: a review of longitudinal FMRI investigations and neural interpretations. Curr Med Chem. 2013;20(3):428–37.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry. 2012;169(11):1203–10.PubMedCrossRefGoogle Scholar
  95. 95.
    Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, et al. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. 2014;75(5):e11–3.CrossRefGoogle Scholar
  96. 96.
    Kumari V, Tercer T. Cognitive behaviour therapy for psychosis: insights from neuroimaging. J Neuroimaging Psychiatry Neurol. 2017;2:11–9.CrossRefGoogle Scholar
  97. 97.
    Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry. 2011;168(5):472–85.PubMedCrossRefGoogle Scholar
  98. 98.
    Stafford MR, Jackson H, Mayo-Wilson E, Morrison AP, Kendall T. Early interventions to prevent psychosis: systematic review and meta-analysis. BMJ. 2013;346:f185.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    van der Gaag M, Smit F, Bechdolf A, French P, Linszen DH, Yung AR, et al. Preventing a first episode of psychosis: meta-analysis of randomized controlled prevention trials of 12 month and longer-term follow-ups. Schizophr Res. 2013;149(1-3):56–62.PubMedCrossRefGoogle Scholar
  100. 100.
    Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull. 2014;40(1):181–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhu F, Zhang L, Ding YQ, Zhao J, Zheng Y. Neonatal intrahippocampal injection of lipopolysaccharide induces deficits in social behavior and prepulse inhibition and microglial activation in rats: implication for a new schizophrenia animal model. Brain Behav Immun. 2014;38:166–74.PubMedCrossRefGoogle Scholar
  102. 102.
    Müller N. The role of anti-inflammatory treatment in psychiatric disorders. Psychiatr Danub. 2013;25(3):292–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eleanor Scutt
    • 1
  • Stefan Borgwardt
    • 2
  • Paolo Fusar-Poli
    • 1
    Email author
  1. 1.Department of Psychosis StudiesInstitute of Psychiatry Psychology and Neuroscience (IoPPN), King’s College LondonLondonUK
  2. 2.Department of Psychiatry (UPK)University of BaselBaselSwitzerland

Personalised recommendations