Advertisement

Neuroimaging of Neurotransmitter Alterations in Schizophrenia and Its Relevance for Negative Symptoms

  • Andreas HeinzEmail author
  • Stefan Borgwardt
  • Lynn E. DeLisi
Chapter

Abstract

Neurotransmitter imaging in schizophrenia research has for a long time focused on dopaminergic neurotransmission, based on the clinical observation of the effects of neuroleptics on dopamine D2-receptors [1]. Dopaminergic neurotransmission can best be assessed using positron emission tomography (PET) or single-photon emission computed tomography (SPECT), with tracers available for dopamine synthesis capacity, dopamine D1 and D2 receptor imaging, and the assessment of transporter availability. Most schizophrenia theories suggest that dopamine dysfunction is embedded in neurocircuits linking the prefrontal cortex with the striatum and thalamus in multiple neurocircuits that control motivational and cognitive aspects of complex behavior [2, 3]. Key neurotransmitters in these neurocircuits are glutamate for excitatory and GABA for inhibitory effects, and concentrations of these neurotransmitters have mainly been assessed using spectroscopy, also in combination with PET or SPECT for simultaneous measurement of striatal dopaminergic neurotransmission [4]. Spectroscopy has the disadvantage of assessing glutamate independent of whether or not this molecule is directly involved in neurotransmission. Further neurotransmitters assessed in schizophrenia research range from serotonin to acetylcholine; however, most research to date has focused on glutamate-dopamine interactions [5, 6].

References

  1. 1.
    Carlsson A, Waters N, Carlsson ML. Neurotransmitter actions in schizophrenia—therapeutic implications. Biol Psychiatry. 1999;46:1388–95.CrossRefGoogle Scholar
  2. 2.
    Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.CrossRefGoogle Scholar
  3. 3.
    Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–9.CrossRefGoogle Scholar
  4. 4.
    Gleich T, Deserno L, Lorenz RC, Boehme R, Pankow A, Buchert R, Kühn S, Heinz A, Schlagenhauf F, Gallinat J. Prefrontal and striatal glutamate differently relate to striatal dopamine: potential regulatory mechanisms of striatal presynaptic dopamine function? J Neurosci. 2015;35:9615–21.CrossRefGoogle Scholar
  5. 5.
    Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia. Nat Rev Neurosci. 2016;17:524–32.CrossRefGoogle Scholar
  6. 6.
    Heinz A, Schlagenhauf F. Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull. 2010;36:472–85.CrossRefGoogle Scholar
  7. 7.
    Goldman-Rakic PS. Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A. 1996;93:13473–80.CrossRefGoogle Scholar
  8. 8.
    Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41:1–24.CrossRefGoogle Scholar
  9. 9.
    Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18:247–91.CrossRefGoogle Scholar
  10. 10.
    Heinz A. Dopaminergic dysfunction in alcoholism and schizophrenia-psychopathological and behavioral correlates. Eur Psychiatry. 2002;17:9–16.CrossRefGoogle Scholar
  11. 11.
    Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160:13–23.CrossRefGoogle Scholar
  12. 12.
    Heinz A, Knable MB, Coppola R, Gorey JG, Jones DW, Lee KS, Weinberger DR. Psychomotor slowing, negative symptoms and dopamine receptor availability—an IBZM SPECT study in neuroleptic-treated and drug-free schizophrenic patients. Schizophr Res. 1998;31:19–26.CrossRefGoogle Scholar
  13. 13.
    Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.CrossRefGoogle Scholar
  14. 14.
    Pycock CJ, Kerwin RW, Carter CJ. Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature. 1980;286:74–6.CrossRefGoogle Scholar
  15. 15.
    Heinz A, Saunders RC, Kolachana BS, Jones DW, Gorey JG, Bachevalier J, Weinberger DR. Striatal dopamine receptors and transporters in monkeys with neonatal temporal limbic damage. Synapse. 1999;32:71–9.CrossRefGoogle Scholar
  16. 16.
    Lipska BK, Jaskiw GE, Weinberger DR. The effects of combined prefrontal cortical and hippocampal damage on dopamine-related behaviors in rats. Pharmacol Biochem Behav. 1994;48:1053–7.CrossRefGoogle Scholar
  17. 17.
    Weinberger DR. On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology. 1996;14:1–11.CrossRefGoogle Scholar
  18. 18.
    Saunders RC, Kolachana BS, Bachevalier J, Weinberger DR. Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature. 1998;393:169–71.CrossRefGoogle Scholar
  19. 19.
    Heinz A, Weinberger DR. Schizophrenia: the neurodevelopmental hypothesis. In:Current concepts in psychiatry (Psychiatrie der Gegenwart). Berlin: Springer; 2000. p. 89–104.Google Scholar
  20. 20.
    Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, Alpert NM. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci. 1998;1:318–23.CrossRefGoogle Scholar
  21. 21.
    Das T, Ivleva EI, Wagner AD, Stark CE, Tamminga CA. Loss of pattern separation performance in schizophrenia suggests dentate gyrus dysfunction. Schizophr Res. 2014;159:193–7.CrossRefGoogle Scholar
  22. 22.
    van Elst LT, Valerius G, Büchert M, Thiel T, Rüsch N, Bubl E, Hennig J, Ebert D, Olbrich HM. Increased prefrontal and hippocampal glutamate concentration in schizophrenia: evidence from a magnetic resonance spectroscopy study. Biol Psychiatry. 2005;58:724–30.CrossRefGoogle Scholar
  23. 23.
    Cantor-Graae E, Selten JP. Schizophrenia and migration: a meta-analysis and review. Am J Psychiatry. 2005;162:12–24.CrossRefGoogle Scholar
  24. 24.
    Veling W. Ethnic minority position and risk for psychotic disorders. Curr Opin Psychiatry. 2013;26:166–71.CrossRefGoogle Scholar
  25. 25.
    Veling W, Susser E, van Os J, Mackenbach JP, Selten JP, Hoek HW. Ethnic density of neighborhoods and incidence of psychotic disorders among immigrants. Am J Psychiatry. 2008;165:66–73.CrossRefGoogle Scholar
  26. 26.
    DeLisi LE. A case for returning to multiplex families for further understanding of the heritability of schizophrenia: a psychiatrist’s perspective. Mol Neuropsychiatry. 2016;2:15–9.CrossRefGoogle Scholar
  27. 27.
    Fletcher P. The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nat Neurosci. 1998;1:266–7.CrossRefGoogle Scholar
  28. 28.
    Rüsch N, Tebartz van Elst L, Valerius G, Büchert M, Thiel T, Ebert D, Hennig J, Olbrich HM. Neurochemical and structural correlates of executive dysfunction in schizophrenia. Schizophr Res. 2008;99:155–63.CrossRefGoogle Scholar
  29. 29.
    Borgwardt S, McGuire P, Fusar-Poli P. Grey matters!—mapping the transition into psychosis. Schizophr Res. 2011;133:63–7.CrossRefGoogle Scholar
  30. 30.
    Bernasconi R, Smieskova R, Schmidt A, Harrisberger F, Raschle NM, Lenz C, Walter A, Simon A, Riecher-Rössler A, Radue EW, Lang UE, Fusar-Poli P, Borgwardt SJ. Hippocampal volume correlates with attenuated negative psychotic symptoms irrespective of antidepressant medication. Neuroimage Clin. 2015;8:230–7.CrossRefGoogle Scholar
  31. 31.
    Ho NF, Holt DJ, Cheung M, Iglesias JE, Goh A, Wang M, Lim JK, de Souza J, Poh JS, See YM, Adcock AR, Wood SJ, Chee MW, Lee J, Zhou J. Progressive decline in hippocampal CA1 volume in individuals at ultra-high risk for psychosis who do not remit: findings from the longitudinal youth at risk study. Neuropsychopharmacology. 2017;42:1361–70.CrossRefGoogle Scholar
  32. 32.
    Nenadic I, Maitra R, Basu S, Dietzek M, Schönfeld N, Lorenz C, Gussew A, Amminger GP, McGorry P, Reichenbach JR, Sauer H, Gaser C, Smesny S. Associations of hippocampal metabolism and regional brain grey matter in neuroleptic-naïve ultra-high-risk subjects and first-episode schizophrenia. Eur Neuropsychopharmacol. 2015;25:1661–8.CrossRefGoogle Scholar
  33. 33.
    Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, et al. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry. 2000;48:627–40.CrossRefGoogle Scholar
  34. 34.
    Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 2005;46:703–13.CrossRefGoogle Scholar
  35. 35.
    Schmidt A, Crossley NA, Harrisberger F, Smieskova R, Lenz C, Riecher-Rössler A, Lang UE, McGuire P, Fusar-Poli P, Borgwardt S. Structural network disorganization in subjects at clinical high risk for psychosis. Schizophr Bull. 2017;43(3):583–91.PubMedGoogle Scholar
  36. 36.
    Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69:776–86.CrossRefGoogle Scholar
  37. 37.
    Kumakura Y, Cumming P, Vernaleken I, Buchholz HG, Siessmeier T, Heinz A, Kienast T, et al. Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci. 2007;27:8080–7.CrossRefGoogle Scholar
  38. 38.
    Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A. 1996;93:9235–40.CrossRefGoogle Scholar
  39. 39.
    Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A. 2000;97:8104–9.CrossRefGoogle Scholar
  40. 40.
    Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22:3708–19.CrossRefGoogle Scholar
  41. 41.
    Kienast T, Hariri AR, Schlagenhauf F, Wrase J, Sterzer P, Buchholz HG, Smolka MN, et al. Dopamine in amygdala gates limbic processing of aversive stimuli in humans. Nat Neurosci. 2008;11:1381–2.CrossRefGoogle Scholar
  42. 42.
    Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE, Weinberger DR. Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry. 2004;161:490–500.CrossRefGoogle Scholar
  43. 43.
    Winterer G, Musso F, Beckmann C, Mattay V, Egan MF, Jones DW, Callicott JH, et al. Instability of prefrontal signal processing in schizophrenia. Am J Psychiatry. 2006;163:1960–8.CrossRefGoogle Scholar
  44. 44.
    Jackson JH. The Croonian lectures on evolution and dissolution of the nervous system. Lancet. 1884;123:739–44.CrossRefGoogle Scholar
  45. 45.
    Heinz A, Romero B, Weinberger DR. Functional mapping with single-photon emission computed tomography and positron emission tomography. In: Lawrie S, Johnstone E, Weinberger DR, editors. Schizophrenia—from neuroimaging to neuroscience. Oxford: Oxford University Press; 2004. p. 167–211.Google Scholar
  46. 46.
    Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry. 2003;160:2209–15.CrossRefGoogle Scholar
  47. 47.
    Andreasen NC. Negative symptoms in schizophrenia. Definition and reliability. Arch Gen Psychiatry. 1982;39:784–8.CrossRefGoogle Scholar
  48. 48.
    Andreasen NC. Positive and negative symptoms: historical and conceptual aspects. In: Andreasen NC, editor. Positive and negative symptoms and syndromes, Modern problems of pharmacopsychiatry, vol. 24. Basel: Karger; 1990. p. 1–42.Google Scholar
  49. 49.
    Heinz A, Schmidt LG, Reischies FM. Anhedonia in schizophrenic, depressed, or alcohol-dependent patients—neurobiological correlates. Pharmacopsychiatry. 1994;27(Suppl 1):7–10.CrossRefGoogle Scholar
  50. 50.
    Wise RA. The anhedonia hypothesis: Mark III. Behav Brain Sci. 1985;8:178–86.CrossRefGoogle Scholar
  51. 51.
    Nørbak-Emig H, Ebdrup BH, Fagerlund B, Svarer C, Rasmussen H, Friberg L, Allerup PN, Rostrup E, Pinborg LH, Glenthøj BY. Frontal D2/3 receptor availability in schizophrenia patients before and after their first antipsychotic treatment: relation to cognitive functions and psychopathology. Int J Neuropsychopharmacol. 2016;19:pyw006.  https://doi.org/10.1093/ijnp/pyw006.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lataster J, van Os J, de Haan L, Thewissen V, Bak M, Lataster T, Lardinois M, Delespaul PA, Myin-Germeys I. Emotional experience and estimates of D2 receptor occupancy in psychotic patients treated with haloperidol, risperidone, or olanzapine: an experience sampling study. J Clin Psychiatry. 2011;72:1397–404.CrossRefGoogle Scholar
  53. 53.
    Juckel G, Schlagenhauf F, Koslowski M, Wüstenberg T, Villringer A, Knutson B, Wrase J, Heinz A. Dysfunction of ventral striatal reward prediction in schizophrenia. NeuroImage. 2006;29:409–16.CrossRefGoogle Scholar
  54. 54.
    Bleuler E. Dementia praecox oder die Gruppe der Schizophrenien. Leipzig: Deuticke; 1911.Google Scholar
  55. 55.
    Harvey PD, Koren D, Reichenberg A, Bowie CR. Negative symptoms and cognitive deficits: what is the nature of their relationship? Schizophr Bull. 2006;32:250–8.CrossRefGoogle Scholar
  56. 56.
    Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007;30:259–88.CrossRefGoogle Scholar
  57. 57.
    Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21:RC159.CrossRefGoogle Scholar
  58. 58.
    Hägele C, Schlagenhauf F, Rapp M, Sterzer P, Beck A, Bermpohl F, Stoy M, et al. Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology. 2015;232:331–41.CrossRefGoogle Scholar
  59. 59.
    Schlagenhauf F, Huys QJ, Deserno L, Rapp MA, Beck A, Heinze HJ, Dolan R, Heinz A. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage. 2014;89:171–80.CrossRefGoogle Scholar
  60. 60.
    Stephan KE, Schlagenhauf S, Huys QJ, Raman S, Aponte EA, Brodersen KH, Rigoux L, et al. Computational neuroimaging strategies for single patient prediction. NeuroImage. 2016;145:180–99.CrossRefGoogle Scholar
  61. 61.
    Pankow A, Friedel E, Sterzer P, Seiferth N, Walter H, Heinz A, Schlagenhauf F. Altered amygdala activation in schizophrenia patients during emotion processing. Schizophr Res. 2013;150:101–6.CrossRefGoogle Scholar
  62. 62.
    Radua J, Schmidt A, Borgwardt S, Heinz A, Schlagenhauf F, McGuire P, Fusar-Poli P. Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis. JAMA Psychiatry. 2015;72:1243–51.CrossRefGoogle Scholar
  63. 63.
    Abi-Dargham A, Kegeles LS, Zea-Ponce Y, Mawlawi O, Martinez D, Mitropoulou V, O’Flynn K, Koenigsberg HW, Van Heertum R, Cooper T, Laruelle M, Siever LJ. Striatal amphetamine-induced dopamine release in patients with schizotypal personality disorder studied with single photon emission computed tomography and [123I]iodobenzamide. Biol Psychiatry. 2004;55:1001–6.CrossRefGoogle Scholar
  64. 64.
    Thompson JL, Rosell DR, Slifstein M, Girgis RR, Xu X, Ehrlich Y, Kegeles LS, Hazlett EA, Abi-Dargham A, Siever LJ. Prefrontal dopamine D1 receptors and working memory in schizotypal personality disorder: a PET study with [11C]NNC112. Psychopharmacology. 2014;231:4231–40.CrossRefGoogle Scholar
  65. 65.
    Fervaha G, Remington G. Neuroimaging findings in schizotypal personality disorder: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:96–107.CrossRefGoogle Scholar
  66. 66.
    Arnold SJ, Ivleva EI, Gopal TA, Reddy AP, Jeon-Slaughter H, Sacco CB, Francis AN, Tandon N, Bidesi AS, Witte B, Poudyal G, Pearlson GD, Sweeney JA, Clementz BA, Keshavan MS, Tamminga CA. Hippocampal volume is reduced in schizophrenia and schizoaffective disorder but not in psychotic bipolar I disorder demonstrated by both manual tracing and automated parcellation (FreeSurfer). Schizophr Bull. 2015;41:233–49.CrossRefGoogle Scholar
  67. 67.
    Fusar-Poli P, Borgwardt S, Bechdolf A, Addington J, Riecher-Rössler A, Schultze-Lutter F, Keshavan M, Wood S, Ruhrmann S, Seidman LJ, Valmaggia L, Cannon T, Velthorst E, De Haan L, Cornblatt B, Bonoldi I, Birchwood M, McGlashan T, Carpenter W, McGorry P, Klosterkötter J, McGuire P, Yung A. The psychosis high-risk state. JAMA Psychiatry. 2013;70(1):107–20.CrossRefGoogle Scholar
  68. 68.
    Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, Barale F, Caverzasi E, McGuire P. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69(3):220–9.CrossRefGoogle Scholar
  69. 69.
    Callicott JH, Egan MF, Mattay VS, Bertolino A, Bone AD, Verchinksi B, Weinberger DR. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry. 2003;160:709–19.CrossRefGoogle Scholar
  70. 70.
    Weiser M, Reichenberg A, Kravitz E, Lubin G, Shmushkevich M, Glahn DC, Gross R, Rabinowitz J, Noy S, Davidson M. Subtle cognitive dysfunction in nonaffected siblings of individuals affected by nonpsychotic disorders. Biol Psychiatry. 2008;63:602–8.CrossRefGoogle Scholar
  71. 71.
    International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P. Common polygenetic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.PubMedCentralGoogle Scholar
  72. 72.
    Keshavan MS, Giedd J, Lau JYF, Lewis DA, Paus T. Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry. 2014;1:549–58.CrossRefGoogle Scholar
  73. 73.
    Tamminga CA, Pearlson G, Keshavan M, Sweeney J, Clementz B, Thaker G. Bipolar and schizophrenia network for intermediate phenotypes: outcomes across the psychosis continuum. Schizophr Bull. 2014;40(suppl 2):S131–7.CrossRefGoogle Scholar
  74. 74.
    Ethridge LE, Soilleux M, Nakonezny PA, Reilly JL, Hill SK, Keefe RS, Gershon ES, Pearlson GD, Tamminga CA, Keshavan MS, Sweeney JA. Behavioral response inhibition in psychotic disorders: diagnostic specificity, familiality and relation to generalized cognitive deficit. Schizophr Res. 2014;159:491–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andreas Heinz
    • 1
    Email author
  • Stefan Borgwardt
    • 2
  • Lynn E. DeLisi
    • 3
  1. 1.Department of Psychiatry and PsychotherapyCharité Campus Mitte, Charite University MedicineBerlinGermany
  2. 2.Department of Psychiatry (UPK)University of BaselBaselSwitzerland
  3. 3.VA Boston Healthcare SystemHarvard Medical SchoolBrocktonUSA

Personalised recommendations